

Lecture Notes in Artificial Intelligence 4894
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Hendrik Blockeel Jan Ramon
Jude Shavlik Prasad Tadepalli (Eds.)

Inductive
Logic Programming

17th International Conference, ILP 2007
Corvallis, OR, USA, June 19-21, 2007
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Hendrik Blockeel
Jan Ramon
Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
E-mail:{hendrik.blockeel, Jan.Ramon}@cs.kuleuven.be

Jude Shavlik
University of Wisconsin, Madison, WI 53706, USA
E-mail: shavlik@cs.wisc.edu

Prasad Tadepalli
Oregon State University, Corvallis, OR 97331-3202, USA
E-mail: tadepall@cs.orst.edu

Library of Congress Control Number: 2008922294

CR Subject Classification (1998): I.2.3, I.2.6, I.2, D.1.6, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-78468-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78468-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12236039 06/3180 5 4 3 2 1 0

Preface

ILP 2007, the 17th Conference on Inductive Logic Programming, was held in
Corvallis, Oregon, USA, June 19–21, and was collocated with the 24th Interna-
tional Conference on Machine Learning. The program consisted of 15 full and 14
short presentations, a poster session, keynote talks by Paolo Frasconi (Learning
with Kernels and Logical Representations) and David Jensen (Beyond Prediction:
Directions for Probabilistic and Relational Learning), and several joint sessions
with ICML.

Thirty-eight submissions were received this year, out of which fifteen were
accepted for publication in the proceedings as full papers and eleven as short
papers. Inclusion in the proceedings was decided by taking into account not only
the relevance and quality of the work described, but also the quality and level of
maturity of the text. Several more submissions were accepted as work-in-progress
presentations. Thus the 2007 edition of ILP continued the tradition of adopting
high selectivity for published papers, while at the same time offering a forum for
work in progress.

All accepted papers were made available in temporary online proceedings
during the conference. Revised versions of the submitted papers, incorporating
feedback from discussions at the conference, are included either in the proceed-
ings of the conference (this volume) or, for a small number of selected papers, in
a special issue of the Machine Learning journal (abstracts of these are included
in this volume). Papers reporting on work in progress remain available in the
online proceedings, at http://pages.cs.wisc.edu/~shavlik/ilp07wip/.

The aim of the collocation of ILP and ICML was to promote more interac-
tion between these two communities. The joint sessions with ICML included,
besides technical talks from both ILP and ICML, a panel discussion on Struc-
tured Machine Learning: The Next Ten Years, with panelists Tom Dietterich,
Pedro Domingos, Lise Getoor, Stephen Muggleton and Bernhard Pfahringer.
ILP participants also had access to the ICML tutorials, several of which were
highly relevant to the ILP community. We believe that the large attendance
of the joint sessions and the ILP-related tutorials by both communities shows
the growing intersection between their interests and confirms the desirability of
increased interaction between them.

The ILP 2007 Best Student Paper Award, sponsored by Machine Learning,
went to Jens Lehmann and Pascal Hitzler for their two papers Foundations of
Refinement Operators for Description Logics and A Refinement Operator Based
Learning Algorithm for the ALC Description Logic.

This conference would of course not have been possible without the extensive
efforts of the program committee, the additional reviewers, and the student
volunteers who helped with the practical organization. We thank all of them
for their excellent work. We also gratefully acknowledge the support of Oregon

VI Preface

State University, the Machine Learning journal published by Springer, and an
anonymous donor. Finally, we thank the International Machine Learning Society
for facilitating collaboration.

The next edition of the conference, ILP 2008, will be held in Prague, Czech
Republic, chaired by Filip Železný and Nada Lavrač. We wish them a highly
successful event.

November 2007 Hendrik Blockeel
Jan Ramon

Jude Shavlik
Prasad Tadepalli

Organization

Program Co-chairs

Hendrik Blockeel (Katholieke Universiteit Leuven, Belgium)
Jude Shavlik (University of Wisconsin, USA)
Prasad Tadepalli (Oregon State University, USA)

Local Arrangements Co-chairs

Prasad Tadepalli (Oregon State University, USA)
Alan Fern (Oregon State University, USA)

Proceedings Chair

Jan Ramon (Katholieke Universiteit Leuven, Belgium)

Program Committee

R. Camacho Universidade do Porto, Portugal
J. Cussens University of York, UK
L. Dehaspe Katholieke Universiteit Leuven, Belgium
L. De Raedt Katholieke Universiteit Leuven, Belgium
S. Džeroski Jožef Stefan Institute, Slovenia
F. Esposito Università di Bari, Italy
A. Fern Oregon State University, USA
P. Flach University of Bristol, UK
L. Holder Washington State University, USA
T. Horvath University of Bonn and Fraunhofer Institute,

Germany
A. Karwath Albert-Ludwigs-Universität Freiburg, Germany
K. Kersting Massachusetts Institute of Technology, USA
R. King University of Wales, Aberystwyth, UK
S. Kramer Technische Universität München, Germany
N. Lavrač Jožef Stefan Institute, Slovenia
F. Lisi Università di Bari, Italy
D. Malerba Università di Bari, Italy
B. Milch Massachusetts Institute of Technology, USA
S. Muggleton Imperial College London, UK
J. Neville Purdue University, USA

VIII Organization

T. Oates University of Maryland Baltimore County, USA
K. Ohara Osaka University, Japan
R. Otero University of Corunna, Spain
D. Page University of Wisconsin - Madison, USA
B. Pfahringer University of Waikato, New Zealand
C. Rouveirol Université Paris-Nord, France
V. Santos Costa Universidade do Porto, Portugal
M. Sebag Université Paris-Sud, France
T. Shoudai Kyushu University, Japan
A. Srinivasan IBM India Research Laboratory, India
J. Struyf Katholieke Universiteit Leuven, Belgium
T. Uchida Hiroshima City University, Japan
C. Vrain Université d’Orléans, France
S. Wrobel Fraunhofer Institute for Autonomous

Intelligent Systems, Germany
G. Zaverucha Universidade Federal do Rio de Janeiro, Brazil
F. Železný Czech Technical University, Czech Republic

Additional Reviewers

André Bergholz
Marenglen Biba
Mario Boley
Maurice Bruynooghe
Tom Croonenborghs
Kurt Driessens
Nicola Fanizzi
Stefano Ferilli

Daan Fierens
Nuno Fonseca
Angelika Kimmig
Chuan Lu
Neville Mehta
Sriraam Natarajan
Aline Paes
Marc Pickett

Scott Proper
Simon Rawles
Jan Ramon
Kate Revoredo
Lisa Torrey
Anneleen Van Assche
Monika Zakova

Webmasters

Louis Oliphant
Heather Rangner
Patrycia Sullivan
Michael Wynkoop

Table of Contents

Invited Talks

Learning with Kernels and Logical Representations 1
Paolo Frasconi

Beyond Prediction: Directions for Probabilistic and Relational
Learning . 4

David D. Jensen

Extended Abstracts

Learning Probabilistic Logic Models from Probabilistic Examples
(Extended Abstract) . 22

Jianzhong Chen, Stephen Muggleton, and José Santos

Learning Directed Probabilistic Logical Models Using
Ordering-Search . 24

Daan Fierens, Jan Ramon, Maurice Bruynooghe, and
Hendrik Blockeel

Learning to Assign Degrees of Belief in Relational Domains 25
Frédéric Koriche

Bias/Variance Analysis for Relational Domains . 27
Jennifer Neville and David Jensen

Full Papers

Induction of Optimal Semantic Semi-distances for Clausal Knowledge
Bases . 29

Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito

Clustering Relational Data Based on Randomized
Propositionalization . 39

Grant Anderson and Bernhard Pfahringer

Structural Statistical Software Testing with Active Learning in a
Graph . 49

Nicolas Baskiotis and Michèle Sebag

Learning Declarative Bias . 63
Will Bridewell and Ljupčo Todorovski

X Table of Contents

ILP :- Just Trie It . 78
Rui Camacho, Nuno A. Fonseca, Ricardo Rocha, and
Vı́tor Santos Costa

Learning Relational Options for Inductive Transfer in Relational
Reinforcement Learning . 88

Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghe

Empirical Comparison of “Hard” and “Soft” Label Propagation for
Relational Classification . 98

Aram Galstyan and Paul R. Cohen

A Phase Transition-Based Perspective on Multiple Instance Kernels 112
Romaric Gaudel, Michèle Sebag, and Antoine Cornuéjols

Combining Clauses with Various Precisions and Recalls to Produce
Accurate Probabilistic Estimates . 122

Mark Goadrich and Jude Shavlik

Applying Inductive Logic Programming to Process Mining 132
Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari

A Refinement Operator Based Learning Algorithm for the ALC
Description Logic . 147

Jens Lehmann and Pascal Hitzler

Foundations of Refinement Operators for Description Logics 161
Jens Lehmann and Pascal Hitzler

A Relational Hierarchical Model for Decision-Theoretic Assistance 175
Sriraam Natarajan, Prasad Tadepalli, and Alan Fern

Using Bayesian Networks to Direct Stochastic Search in Inductive
Logic Programming . 191

Louis Oliphant and Jude Shavlik

Revising First-Order Logic Theories from Examples Through Stochastic
Local Search . 200

Aline Paes, Gerson Zaverucha, and Vı́tor Santos Costa

Using ILP to Construct Features for Information Extraction from
Semi-structured Text . 211

Ganesh Ramakrishnan, Sachindra Joshi, Sreeram Balakrishnan, and
Ashwin Srinivasan

Mode-Directed Inverse Entailment for Full Clausal Theories 225
Oliver Ray and Katsumi Inoue

Table of Contents XI

Mining of Frequent Block Preserving Outerplanar Graph Structured
Patterns . 239

Yosuke Sasaki, Hitoshi Yamasaki, Takayoshi Shoudai, and
Tomoyuki Uchida

Relational Macros for Transfer in Reinforcement Learning 254
Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin

Seeing the Forest Through the Trees: Learning a Comprehensible
Model from a First Order Ensemble . 269

Anneleen Van Assche and Hendrik Blockeel

Building Relational World Models for Reinforcement Learning 280
Trevor Walker, Lisa Torrey, Jude Shavlik, and Richard Maclin

An Inductive Learning System for XML Documents 292
Xiaobing Wu

Author Index . 307

Learning with Kernels and Logical

Representations

Paolo Frasconi

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze, Italy
http://www.dsi.unifi.it/~paolo/

Abstract. Choosing an appropriate kernel function is a fundamental
step for the application of many popular statistical learning algorithms.
Kernels are actually the natural entry point for inserting prior knowl-
edge into the learning process. Inductive logic programming (ILP), on
the other hand, offers a powerful and flexible framework for describing ex-
isting background knowledge and extracting additional knowledge from
the data. It therefore seems natural to explore the synergy between these
two important paradigms of machine learning. In this extended abstract
(see [1] for a longer version), I briefly review some of our recent work
about statistical learning with kernel machines in the ILP setting.

1 Motivations

Statistical and logical approaches to machine learning offer complementary ad-
vantages. Logic allows us to represent domain knowledge in a natural and expres-
sive way, and ILP can generate theories and explanations. Statistical learning, on
the other hand, allows us to deal with uncertainty and noise in the data. Proba-
bilistic inductive learning programming (PILP), also called statistical relational
learning, is a very active area of research and several representational frame-
works and models have been proposed during the last few years (see e.g. [2,3] for
an overview). It essentially relies on the combined use of logic and probabilities
in the learning process.

One interesting distinction that is often made in statistical supervised learning
is between generative and discriminant classifiers. In the former case, we typically
attempt to model class conditional densities and use Bayes’ theorem to obtain
the conditional probability of the output label given the input. In the latter
case, one attempts to model conditional probabilities directly or, even more sim-
ply, to learn a discriminant function that consistently approximates the optimal
decision function as the number of training examples grows to infinity. Several
PILP approaches are based on generative learning. For example, stochastic logic
programs are a generalization of probabilistic context free grammars that assign
a probability to each definite clause in a logic program and allow us to infer the
probability that a given goal is refuted. The approaches briefly reviewed here
take the discriminant direction and exploit classic statistical supervised learning

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dsi.unifi.it/~paolo/

2 P. Frasconi

algorithms based on kernel machines. Although several kernels have been de-
fined on discrete data structures like strings, trees, and graphs, there are several
motivations for studying the combination of kernels with logic:

– Improving and facilitating kernel design. Background knowledge is usually
plugged-in via the kernel function. We can use background knowledge ex-
pressed by logic programs and convert it into a kernel, thus embedding it
into a statistical learning algorithm in a principled and flexible way.

– Improving the accuracy and the efficiency of existing ILP systems, for exam-
ple by taking advantage of fast sparse large margin learners such as support
vector machines.

– Allowing us to solve in the same framework different learning tasks (e.g.
classification, regression, ranking, etc.), which need ad-hoc solutions in the
case of typical ILP systems.

– Discovering statistically robust and comprehensible features by learning the
kernel function as a logical theory.

2 Overview of Methods

Kernels on Prolog Proof Trees. In this family of kernels (see [4] for details),
examples are first mapped into the execution trace of a logic program (called the
visitor) expressing background knowledge. The similarity between two examples
is then computed as the similarity between the corresponding execution traces
by using a convolution kernel on Prolog typed ground terms [5]. This method
has been applied to artificial and real world problems. It significantly outper-
forms non-probabilistic ILP algorithms in a classic application to protein fold
classification.

Declarative Kernels. In this approach, logic programming allows us to spec-
ify a broad class of convolution kernels, providing a simple interface for the
incorporation of relational background knowledge. Features are generated by an
additional set of mereotopological facts and axioms for reasoning about parts
and places. Declarative kernels have been successfully applied to a large scale
text mining task [6]. Compared to state-of-the-art ILP systems, they offer sim-
ilar or better predictive accuracy and require significantly less computational
resources.

kFOIL. In both previous approaches, the background knowledge that defines
the kernel function is given in advance. Sometimes, however, human-declared
knowledge may be insufficient and we would like to automatically derive a mea-
sure of similarity from the available data. kFOIL learns the kernel function by
searching a definite clause theory that “covers” the training examples via regu-
larized risk minimization [7]. The kernel in kFOIL is proportional to the number
of clauses that are satisfied by the two examples being compared. Clauses are dy-
namically generated by a greedy search algorithm (in the same spirit as FOIL),
guided by the empirical risk associated with the trained kernel machine.

Learning with Kernels and Logical Representations 3

Acknowledgments

I would like to acknowledge the contribution of Luc De Raedt, Niels Landwehr,
Stephen Muggleton, and Andrea Passerini to the research summarized in this
abstract.

References

1. Frasconi, P., Passerini, A.: Learning with kernels and logical representations. In:
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Application of Proba-
bilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg
(2008)

2. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Application of Probabilistic
Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

3. Getoor, L., Taskar, B.: An Introduction to Statistical Relational Learning, Cam-
bridge, ma edn. MIT Press, Cambridge (2007)

4. Passerini, A., Frasconi, P., De Raedt, L.: Kernels on prolog proof trees: Statistical
learning in the ILP setting. Journal of Machine Learning Research 7, 307–342 (2006)

5. Passerini, A., Frasconi, P.: Kernels on prolog ground terms. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pp. 1626–1627.
Edinburgh, Scotland, UK (2005)

6. Frasconi, P., Passerini, A., Muggleton, S., Lodhi, H.: Declarative kernels. In: Kramer,
S., Pfahringer, B. (eds.) Inductive Logic Programming. 15th International Confer-
ence, ILP 2005, Late-Breaking Papers, pp. 17–19 (2005)

7. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning simple rela-
tional kernels. In: Gil, Y., Mooney, R. (eds.) Proc. Twenty-First National Conference
on Artificial Intelligence (AAAI 2006) (2006)

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 4 – 21, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Beyond Prediction:
Directions for Probabilistic

and Relational Learning

David D. Jensen

Department of Computer Science, University of Massachusetts Amherst,
140 Governors Drive, Amherst, Massachusetts, 01003, USA

jensen@cs.umass.edu

Abstract. Research over the past several decades in learning logical and
probabilistic models has greatly increased the range of phenomena that machine
learning can address. Recent work has extended these boundaries even further
by unifying these two powerful learning frameworks. However, new frontiers
await. Current techniques are capable of learning only a subset of the
knowledge needed by practitioners in important domains, and further
unification of probabilistic and logical learning offers a unique ability to
produce the full range of knowledge needed in a wide range of applications.

Keywords: Statistical relational learning, causal inference, quasi-experimental
design.

1 Introduction

The past decade has produced substantial progress in unifying methods for learning
logical and probabilistic models. We now have a large array of representations,
algorithms, performance characterizations, and applications that bring together these
two keys to effective learning and reasoning. Much of this work has sought to
preserve key attributes of existing learning algorithms (e.g., efficiency) while
extending the expressiveness of the representations that can be learned. However,
combining probabilistic and logical techniques may open up entirely new capabilities
that should not be ignored.

Specifically, these recent advances in machine learning for relational data sets have
revealed a surprising new opportunity to learn causal models of complex systems.
The opportunity is a potentially deep and unexploited technical interaction between
two previously unconnected areas: (1) work in statistical relational learning; and (2)
work on quasi-experimental design in the social sciences. Specifically, the type of
new data representations conceived and exploited recently by researchers in statistical
relational learning (SRL) may provide all the information needed to automatically
apply powerful statistical techniques from the social sciences known as quasi-
experimental design (QED). QEDs allow a researcher to exploit unique characteristics
of sub-populations of data to make strong inferences about cause-and-effect

 Beyond Prediction: Directions for Probabilistic and Relational Learning 5

dependencies that would otherwise be undetectable. Such causal dependencies infer
whether manipulating one variable will affect the value of another variable, and they
make such inferences based on non-experimental data.

To date, QEDs have been painstakingly applied by social scientists in an entirely
manual way. However, data representations from SRL that record relations
(organizational, temporal, spatial, and others) could facilitate automatic application of
QEDs. Constructing methods that automatically identify sub-populations of data that
meet the requirements of specific QEDs would enable strong and automatic causal
inferences from non-experimental data. This fusion of work in SRL and QED would
lead to: (1) large increases in the percentage of causal dependencies that can be
accurately inferred from non-experimental data; (2) substantial reductions in the
amount of data needed to discover causal dependencies that can already be inferred;
and (3) reductions in the computational complexity of causal learning algorithms.

If exploited, this capability could substantially improve the ability of researchers to
construct causal models of large and complicated systems (e.g., social systems,
organizations, and computer systems). Such models would be a significant
improvement over existing models learned by statistical and machine learning
techniques, the vast majority of which are non-causal (and thus do not allow analysts
to correctly infer the effects of potential actions) or only weakly causal (because many
of the potential causal dependencies cannot be correctly inferred).

2 Why Causal Models Are Useful

Nearly all algorithms for machine learning analyze data to identify statistical
associations among variables. That is, they identify variables of some entity (e.g., a
patient's occupation, recent physical contacts, and symptoms) that are statistically
associated with other variables (e.g., a disease). Such associations are useful for
making predictions about the values of unobserved variables based on the values of
variables that can be observed. For example, a doctor could predict whether a patient
has a particular disease (an unobserved variable) based on a set of observed
symptoms.

Such associational models can be useful in many situations. For example,
associational models constructed by machine learning algorithms now sit at the heart
of most state-of-the-art systems for machine translation, speech understanding,
computer vision, information extraction, and information retrieval. In all of these
cases, associations among variables alone are sufficient to meet the goals of the
deployed system.

However, machine learning algorithms are often deployed in the hope that they
will support decisions about which actions, or interventions, to make in a given
situation. In the case of medical diagnosis, most medical professionals do not simply
want to diagnose disease, but to prevent, treat, or mitigate the effects of the disease as
well. They want to know what effect a particular intervention (e.g., implementation of
a public health measure or widespread administration of a drug) will have on the
health of a population. In such situations, practitioners want models that help them to

6 D.D. Jensen

design effective interventions, and this requires the modeling of causality, not merely
statistical association.

Remarkably, most existing probabilistic models are practically useless for
designing effective interventions because they only identify statistical associations,
not causal dependencies. As is emphasized in nearly all introductory statistics courses,
correlation is not causation — statistical association between two variables does not
necessarily imply that one causes the other. For example, suppose we gathered a
sample of patients and measured a variety of variables about each patient, including
their history of smoking and their incidence of lung cancer 1. If we analyzed the data,
we would very likely find a statistical association between several of these variables.

Fig. 1. Three causal models that produce statistical association: (a) A causes B; (b) B causes A;
and (c) a common cause C causes both A and B

However, the association between any two variables A and B could result from any
of three causal situations shown in Figure 1. If A and B are associated, then A could
cause B (smoking causes lung cancer), B could cause A (a predisposition to nicotine
addiction causes smoking), or a third variable C could cause both A and B (genetics
could cause both a predisposition to nicotine addiction and a predisposition to lung
cancer)2. If a purely associational model is constructed from data and then used to
support the design of interventions under the assumption that A causes B, either of the
latter two cases could cause the resulting interventions to be ineffective (or even
counterproductive)3.

1 This example is inspired by a similar example from Pearl [1].
2 While the third explanation has been almost entirely discredited through careful experimental

and epidemiological analysis, it was at one time a viable causal explanation for the observed
association between smoking and lung cancer.

3 Limited situations involving causal inference among a few variables, such as the case of
smoking, genetics, and cancer above, are relatively simple to understand (though not
necessarily to analyze). In practice, however, causal models can involve analyzing complex
associations among dozens or hundreds of variables. Many such cases have already long
surpassed the abilities of human analysts to evaluate without the aid of computational tools,
and recent work in relational learning (e.g., [2]) is greatly increasing this complexity by
enabling the construction of probabilistic models that analyze associations among variables
on vast numbers of inter-related entities. The sections below cover this in substantially more
detail.

 Beyond Prediction: Directions for Probabilistic and Relational Learning 7

In contrast, if accurate causal models could be constructed, they would be useful to
a wide range of users within science, government, and business. Some of the most
obvious uses for causal models are modeling the internal dynamics of organizations
and the effects of organizational policies, computer security (e.g., modeling normal
and abnormal user behavior in response to system changes and external events), and
system design and evaluation (e.g., modeling system behavior to diagnose and
improve performance). In addition, many societal goals and functions could be
informed by the construction and use of specific causal models, including education
and training (e.g., helping to design new educational programs and modify existing
ones to maximize effectiveness), logistics (e.g., understanding the effects on the
supply chain to improve on-time delivery of goods and services), and healthcare
(understanding the causal factors underlying infectious diseases and physical
injuries).

3 Example: Fraud Detection at the NASD

One concrete example of the potential opportunities of causal models can be drawn
from recent work of the Knowledge Discovery Laboratory (KDL) at the University of
Massachusetts Amherst. KDL has been working for several years with the National
Association of Securities Dealers (NASD) to analyze large amounts of data on the
structure of the US securities industry and the behavior of individuals within that
industry ([3], [4], [5]). While the effort to date has produced exclusively associational
models, the setting and existing work help make clear the potential applications for
causal models.

3.1 NASD

NASD is the primary private-sector regulator of the securities industry in the United
States4. It is currently responsible for overseeing the activities of more than 5,000
brokerage firms, 170,000 branch offices and 659,000 registered individuals. Since
1939, NASD has worked under the oversight of the U.S. Securities and Exchange
Commission (SEC) to regulate all securities firms (called broker-dealers) that conduct
business with the public. Currently, NASD employs a staff of over 2,500 employees
situated in offices across the country and has an annual operating budget of more than
$500 million.

One of NASD's primary aims is to prevent and discover securities fraud and other
forms of misconduct by member firms and their employees, called registered
representatives, or reps. With over 659,000 reps currently employed, it is imperative
for NASD to direct its limited regulatory resources towards the parties most likely to
engage in risky behavior in the future. It is generally believed by experts at the NASD
and others that fraud happens among small, interconnected groups of individuals. Due
to the large numbers of potential interactions between reps, timely identification of

4 NASD has recently changed its name to FINRA (the Financial Industry Regulatory

Authority), but we retain the older name here for consistency with earlier papers.

8 D.D. Jensen

persons and groups of interest is a significant challenge for NASD regulators. The
ongoing work is joint effort between researchers in KDL and staff at the NASD to
identify effective, automated methods for detecting these high-risk entities to aid
NASD in their regulatory efforts.

3.2 Available Data

The primary data employed in this effort is drawn from NASD's Central Registration
Depository® (CRD), a collection of records representing all federally registered firms
and individuals, including those registered by the SEC, NASD, the states, and other
authorized regulators such as the New York Stock Exchange. This depository includes
key pieces of regulatory data such as ownership and business location for firms and
employment histories for individuals. Although the information in CRD is entirely self-
reported, errors, inaccuracies or missing reports can trigger regulatory action by NASD.
Since 1981, when the CRD was first created, records on around 3.4 million individuals,
360,000 branches and 25,000 firms have been added to the database.

Some of the most critical pieces of information for NASD’s regulatory mission are
records of disciplinary actions, typically called disclosures, filed on particular reps. A
disclosure can represent any non-compliant actions including regulatory, criminal, or
other civil judicial action. In addition, disclosures can also record customer
complaints, termination agreements between firms and individual reps, and financial
hazards an individual rep experience such as bankruptcies, bond denials, and liens.
The disclosure information found in the CRD is one of the primary sources of data on
past behavior that NASD uses to assess future risk and focus their regulatory
examinations to greatest effect.

Fig. 2. Entity-relationship diagram for the NASD data

KDL's analysis utilizes data from the CRD about firms, branches, reps and
disclosures. The complete entity-relation diagram is shown in Figure 2 along with

 Beyond Prediction: Directions for Probabilistic and Relational Learning 9

counts for each entity appearing in our view of the database. Some of the key aspects
of the data set are that it is reasonably large-scale (containing millions of entities),
relational and heterogeneous (containing entities and relations of multiple types), and
dynamic (representing changes over time in the existence and attributes of entities and
relations). In addition, many of the most important statistical associations present in
the data are probabilistic.

3.3 The Potential for Causal Models

To date, our analysis of the CRD data has produced several highly useful models that
are purely associational. For example, we have constructed statistical models that
identify strong associations between the attributes of reps, the branches and firms at
which they have worked, and the other reps who work at those organizations ([3],[4]).
An extensive double-blind evaluation of these models by NASD analysts showed that
they perform well overall and that they perform equivalently to NASD's current
expert-derived rules for prioritizing the attention of field examiners [3]. These
statistical models could be used in place of, or as an augmentation to, NASD's current
methods for identifying high-risk reps and branches.

While highly useful, prioritizing examiner attention affects a relatively small part
of NASD's overall regulatory mission. In contrast, causal models could help provide
answers to an entirely different class of questions, and they could inform much
higher-level decisions. For example, causal models of the securities industry could
help inform NASD's approach to these key decisions:

• Prioritizing new programs — Given limited resources to devote to a particular
region, should NASD place more emphasis on enforcement (e.g., increasing the
rate of examinations) or education (e.g., seminars on complying with NASD and
SEC rules)?

• Making closure decisions — Given that the reps and management of a particular
branch have been proven to engage in misconduct, will closing that branch reduce
future misconduct (because reps have been deprived of a permissive environment)
or increase it (because reps will disperse to other branches and firms, making
monitoring more difficult and encouraging questionable behavior at their new
organizations)?

• Responding to economic conditions — Given a change in a state's economic
picture, how are firms in that state likely to respond? How will the changing
economic picture interact with different potential NASD's regulatory and education
programs in that region to affect the number, composition, and internal regulatory
programs of firms in the state?

An accurate answer to each of these questions virtually requires a correct causal
model.

4 Current Practice

Given that causal models are so useful, it is not surprising that methods have been
developed to learn them from data. At least three classes of statistical techniques have

10 D.D. Jensen

been developed that differ both in the types of data to which they can be applied and
the degree to which they can be applied automatically. One class of techniques, often
grouped under the name “experimental design” is useful when analysts have a high
degree of control over the situation that produces data. Another class of techniques,
which we will call “joint modeling,” combines automated methods for estimation of
joint probability distributions with a small number of assumptions to infer causality
from non-experimental or observational data. A final class of techniques, here
grouped under the term “quasi-experimental design,” seeks to identify situations
where observational data meet the assumptions of the techniques from experimental
design, allowing causal inferences from observational data.

These three classes of methods face a common set of challenges. First, the
techniques must identify whether a statistical association exists between a pair of
variables. The basic principles for reliably inferring statistical association —
statistical hypothesis testing — have been known for decades, and this step poses
relatively little challenge to most manual and algorithmic methods. Second, the
techniques must identify the direction of potential causation. This step is most
commonly resolved through the use of time (causation is assumed to always run
forward in time), but joint modeling can also sometimes resolve this issue in other
ways (see below). Finally, the techniques must eliminate the effects of all other
potential common causes of the variables, to be certain that the observed association
is not just a by-product of other causal influences. As we will see below, each class of
methods approaches this final challenge in a unique way.

4.1 Experimental Design

Probably the most commonly used method in the world today for discovering valid
causal knowledge is the controlled randomized experiment. The rapid expansion of
knowledge in the biological, physical, and social sciences over the past 50 years is
due in no small part to the available “meta-knowledge” about how to design
experiments and analyze their results. Indeed, the discovery, codification, and
widespread adoption of methods for experimental design represent one of the major
intellectual achievements of the past century.

As the name implies (”controlled randomized experiment”), this set of
innovations relies on two key concepts: control and randomization5. Control refers
generally to the ability of an investigator to intentionally set alternative values of
some variable, and to compare the effects of those alternative settings6. Control

5 Here, we omit mention of several other key concepts from experimental design, including

replication, orthogonality, and factorial experiments, which are less relevant to the present
discussion.

6 This use of the term “control” is at slight variance with how the term is usually applied in the
literature on experimental design. “Control” in this context is often used to refer to a set of
subjects that do not receive a treatment (a “control group”) as opposed to another group that
does receive a treatment. Here, however, we use the term in its broader historical meaning to
refer to the ability to set the values of any of a large set of variables so as to keep them
constant or to systematically vary their values. This sort of control is so foundational to
experimental design that many treatments of the topic omit clear mention of it.

 Beyond Prediction: Directions for Probabilistic and Relational Learning 11

lies at the heart of what is typically meant by an “experiment” and the concept is
quite old, stretching back at least as far as John Stuart Mill (1843), and perhaps as
far as Hume a century earlier and Bacon a century before that [6]. By controlling
variables in an experiment, an investigator can either factor out their effects by
holding their value constant or study their effect by systematically varying their
values. To do this, however, an investigator must know of the existence of a
particular variable and be able to affect its value.

“Randomization” refers to the approach of randomly assigning subjects (e.g.,
patients in a medical experiment) to treatment groups so that variation in their
characteristics that cannot be controlled by the investigator (genetic traits, the effects
of unknown medical conditions, etc.) cannot systematically affect the variables being
studied. If randomization is employed, the effect of these uncontrolled characteristics
will average out across a sufficiently large group. The principles of randomization,
and its application to experimental design, was outlined by R.A. Fisher in the 1920s
[7], and it has been a staple of experimental design ever since.

What is remarkable about randomization is that it can remove the effect of
variables that are unknown to the investigator, as long as their values are tied to
subjects who can be randomly assigned to treatment groups. For example, an
investigator does not have to know which specific genetic factors might influence a
patient's response to a particular drug, as long as they randomly assign patients (and
thus their genetic factors) to treatment groups.

Investigators who study phenomena in an experimental setting typically control the
variables that they can, either systematically altering their values or holding them
constant, and randomize most or all the remaining variables. With these two methods,
they can study the effects of the variables whose values they can directly manipulate
and successfully factor out nearly all other potential causes.

4.2 Joint Modeling

Methods from experimental design assume that you have the ability to control the
values of variables and to randomize the assignment of subjects to treatment groups.
However, in many cases, investigators do not have the ability to directly manipulate
either variable values or subject assignment. Either it is impossible in practice (e.g.,
it is essentially impossible to set the value of inflation when studying the effect
of economic conditions) or such manipulation would be unethical (e.g., though
possible in practice, it would be unethical to force subjects to smoke or to work
for specific securities firms). Instead, investigators want to draw causal inferences
from observational data that were gathered without direct manipulation by
investigators.7

Such observational data sets are increasing in both size and number. They are
gathered almost incidentally from a variety of automated systems for accounting,

7 In some cases, a small degree of experimental control or randomization is available to

investigators, but they want to maximize the information-gathering utility of such
interventions. In these cases, too, we would like make use of all possible techniques to exploit
the observational portions of the data.

12 D.D. Jensen

auditing, regulation, inventory control, publishing, information retrieval, and
communication, and they are often massive in both size and scope. In some cases, the
data sets represent the entire population rather than only a sample from it. For
example, NASD's CRD database represents essentially every rep operating in the US
over several decades.

Investigators have sought to exploit this potential wealth of observational data to
infer causal models. Lacking the ability to assure control and randomization,
researchers have devised another way to eliminate potential common causes of
associated variables: joint modeling. This area has been a small but active topic of
research for the past several decades in statistics (e.g., [8],[9]), philosophy (e.g., [10]),
and computer science (e.g., [1]). The key concept of joint modeling is that, rather than
controlling a particular variable, you can estimate the effect of the uncontrolled value
and adjust for that effect mathematically. In this way, modeling provides the
equivalent of control. If the investigator knows about a potential common cause and
can model its effect, then he or she can use that model to factor out the effect of that
potential cause.

In all but the simplest cases, this approach requires modeling the joint probability
distribution of a set of potential causes, and much of the work in this area has been
done using structure learning algorithms for Bayesian networks, which can estimate
the joint probability distribution. Using a fairly conventional structure learning
algorithm, and making a relatively few additional assumptions, the resulting belief
network can be considered to encode causal dependencies8. Furthermore, such
modeling can be done automatically, once the variables of interest are selected, and
the algorithm has the potential to identify all the causal dependencies that hold among
that set of variables.

Fig. 3. Three graphical models with partial shared structure

In many cases, structure learning algorithms can identify a set of model
structures with equivalent estimated likelihood and which collectively account for

8 The additional assumptions include faithfulness, which specifies that causal effects of

different variables do not perfectly cancel out and make it impossible to detect statistical
dependence, and completeness, which specifies that all potential common causes of any pair
of variables included in the model are also included in the model [10].

 Beyond Prediction: Directions for Probabilistic and Relational Learning 13

the vast majority of probability density. If all of these network structures specify
that dependence between two variables exists and runs in a single direction, then it
is reasonable to identify that dependence as causal. Statistical association exists,
runs in a specific direction, and all other potential causes have been accounted for
by modeling. For example, Figure 3 shows a simple example with three network
structures, each of which shows a somewhat different network structure, but all
the structures share a common pair of dependencies showing that C depends on A
and B.

4.3 Quasi-experimental Design

A final class of statistical methods is routinely used to support causal inferences.
These methods, grouped under the rubric “quasi-experimental design” (QED), attempt
to exploit inherent characteristics of observational data sets that partially emulate the
control and randomization possible in an experimental setting [11,12]9. Although
QEDs clearly do not always have the internal validity of traditional experimental
designs, but they can be applied to the much wider array of data sets that modern data
collection practices have made available, and the size and scope of those data sets can
partially or completely compensate for the deficiencies that arise from lack of
experimental control. Indeed, there are a wide variety of situations where causality
can be explored in no other way.

In the absence of explicit control and randomization, some QEDs employ case
matching to identify pairs of data instances that are as similar as possible in all
respects except for the variable under investigation (the non-equivalent group design).
Other QEDs examine how the value of a given variable on the same data instances
changes over time, typically before and after some specific event (the regression-
discontinuity design). Other types of quasi-experimental designs that have been
devised include the proxy pretest design, double pretest design, nonequivalent
dependent variables design, pattern matching design, and the regression point
displacement design.

A particularly salient example of quasi-experimental design is a classical twin
study, a design that has been employed for decades to study the causal factors for
particular diseases and conditions. Twin studies compare the incidence of disease in
sets of monozygotic (identical) and dizygotic (fraternal) twins. Monozygotic twins
share identical genetics, a common fetal environment, and (typically) a common post-
natal environment. The same is true for dizygotic twins, except that they are only
genetically similar rather than genetically identical.

This remarkable degree of shared background, as well as the specific difference in the
shared background between the two types of twins, provides a nearly ideal setting to
study the effect of genetics on disease. For example, to identify the degree to which a
given condition is due to genetic factors, investigators can determine the correlation in

9 Here we use a relatively expansive definition of QEDs, including some methods that are not

typically covered in textbooks on QED, but which fit well within the general framework of
this class of techniques. In particular, we include here methods from hierarchical and multi-
level modeling.

14 D.D. Jensen

the condition among pairs of each type of twin, and then compare the correlation between
the two types. A large difference indicates that a large portion of the condition is due
to genetics, whereas no difference indicates that the condition is due to other factors.
Figure 4 summarizes a few results from twin studies of various conditions.

Fig. 4. Example results from twin studies, drawn from a recent review [13]. Darkest bars
indicate effects due to genetics, dark bars to shared environment, and light bars to unique
environment.

Two factors are remarkable about the efficacy of twin studies. First, they allow the
quantitative impact of genetics to be determined even though investigators may have
no idea what specific genes are involved. That is, they can determine the degree to
which some variable on a particularly entity (genotype) affects the observed condition
without being able to define or measure that specific variable. Second, they can
perform this analysis by studying only a tiny fraction of an entire population. Indeed,
without access to a very large population, it would be virtually impossible to gain
access to a sufficient number of pairs of monozygotic and dizygotic twins. We will
return to both of these factors below.

It is also important to note that the validity of twin studies relies on at least three
pieces of information known to investigators but not (typically) represented explicitly
in data used for QED studies. First, twins occur relatively randomly in the population.
If identical twins were much more likely to be born to parents with particular genetic
traits or who lived in particular environments, then those factors would confound
efforts to use twins to study the effects of genetics on physical conditions. Second,
genetic makeup is established temporally prior to the onset of diseases and other
conditions. Thus, we know the direction of causality without having to determine it
from data.

Finally, and perhaps most importantly, we know that genotype (genetic
sequence) and phenotype (physical condition) can be treated as related but separate
entities. This means that individuals can have identical genotypes but not identical
phenotypes. Thus, the relational representation shown in Figure 5 can be used to
represent the data, where monozygotic twins share a common genotype and
dizygotic twins do not. This relational representation underlies the inference of
investigators that, if the two types of twins do not differ significantly in the
correlation of their conditions, then all possible variables on genotype can be
removed as potential causal factors. Again, we will return to all these three factors
in the discussion below.

 Beyond Prediction: Directions for Probabilistic and Relational Learning 15

Fig. 5. Graphical models representing monozygotic (a) and dizygotic (b) twins. Circles
represent variables, boxes represent entities, and solid and dashed arrows represent known and
potential dependencies, respectively.

5 Limitations of Current Approaches

The availability of three different classes of methods might imply that the existing
technical infrastructure for causal inference is sufficient. However, an interacting
set of limitations severely restricts the applicability and effectiveness of these
methods.

• Insufficient power — The only existing methods that are automatic (those from
joint modeling) are not capable of discovering all important causal dependencies.
The ability of joint inference methods to discover causal dependencies led to a great
deal of initial enthusiasm for these methods in the machine learning community.
However, as experience has accumulated, it has become clear that these methods
often cannot distinguish among a large equivalence class of models that encode the
same joint probability distribution. In such cases, joint modeling alone cannot

16 D.D. Jensen

distinguish among model structures with different edges, cannot resolve the
direction of key edges, or both.

• Computational intractability — Attempting to learn causal models in non-trivial
domains often leads to intractable computational problems due to the need to search
large spaces of potential models (vastly increasing the number of models that must
be evaluated) and the need to evaluate those models against very large data sets
(increasing the effort required to evaluate each model).

• Manual application — In contrast to joint modeling methods, quasi-experimental
designs must be applied manually. They are not an integral part of automated
algorithms for machine learning and knowledge discovery. QEDs are currently used
as a way for investigators to manually structure data analysis tasks and to select
among different statistical tests, rather than as a component of a machine learning
algorithm. This limitation is understandable, given that the applicability of specific
QEDs requires knowledge that has not, until quite recently, been explicitly
represented in the data provided to machine learning algorithms (relations among
entities, temporal information, etc.). However, that situation has changed
dramatically over the past decade.

• Non-relational models — None of the approaches support construction of joint
models of relational domains (domains consisting of interacting entities). The
techniques either assume that the domain can be accurately described as a set of
independent entities of a single type (in the case of joint modeling), or they do not
provide the means to construct a joint probability model (in the case of
experimental and quasi-experimental design) 10.

These limitations prevent application of causal modeling to the majority of domains
of realistic interest, including the NASD tasks outlined above.

6 Research Opportunities

This raises an intriguing target for future machine learning research: Developing
methods for automatically applying quasi-experimental designs to large relational data
sets, and to seamlessly integrate these methods for causal inference with methods from
joint modeling. We conjecture that the combination of these two classes of methods will
produce a large increase in the number of causal dependencies that can be learned, a
dramatic decrease in the amount of data needed to learn these dependencies, and a
significant decrease in computational complexity of causal inference.

Such research could address three key objectives:

• Select and enhance data representation and modeling framework — Researchers in
statistical relational learning (SRL) and the larger machine learning community
have recently produced a remarkable array of new languages for representing both
models and data. Among the representational enhancements are three key types of

10 It is, in theory, possible for quasi-experimental designs to inform the construction of

relational models (indeed, that is one of the primary ideas underlying this proposal).
However, this would require something that has not been done to date: combining QEDs
with models capable of representing joint probability distributions over relational data.

 Beyond Prediction: Directions for Probabilistic and Relational Learning 17

information needed by QEDs: relations, time, and assignment mechanisms11. While
at least one existing language can represent each of these types of information,
there is not a clear choice among the set of existing languages, and further
investigation may reveal additional capabilities necessary to exploit the full range
of QEDs. Future work should select, enhance, and (if necessary) develop new data
representations and learning frameworks to meet our needs.

• Develop automated learning methods that apply QEDs — A large number of
specific techniques have been developed in QED and multi-level modeling. Future
work should bring those methods into a common framework, develop automated
methods for evaluating the applicability and likely validity of specific QEDs,
develop querying methods that can select appropriate data samples, and implement
algorithms for applying the techniques themselves. These methods will differ
substantially from existing machine learning methods, which nearly always apply
the same algorithm to the entire data set. In the case of QED, different data will
likely be sampled to evaluate each different dependency, and evaluating two
different dependencies is likely to require two different designs.

• Integrate QED and joint modeling methods — Finally, future work should develop
methods to control the application of both QED and traditional joint modeling
techniques to integrate these methods into a single powerful system. Such a system
will necessitate some moderately complex reasoning because of the interactions
among QED methods and joint modeling. For example, joint modeling might be
intractable initially, because the number of potential dependencies is so large.
However, QED techniques could evaluate specific classes of dependencies and
identify whole entities whose variables have no effect on specific variables. They
could also identify dependencies that exist with high probability, and thereby vastly
decrease the search space for joint modeling. Similarly, the dependencies found by
joint modeling may enable or disable specific QEDs.

Once developed, we believe that these methods will lessen or remove the deficiencies
noted above. Specifically, the fusion of machine learning and QED that we propose
will directly automate application of QEDs and learn relational models. In addition,
these methods will indirectly:

• Increase statistical power — In the simplest case, QEDs will strictly add to the
potential power of a joint modeling approach because they may be able to infer
causal dependencies that joint modeling cannot, and they are unlikely to reduce the
effectiveness of joint modeling. However, we also expect that they will vastly prune
the search space for joint modeling techniques by identifying key causal
dependencies and independencies before joint modeling is attempted. This, in turn,
will significantly improve the overall power of the combined system.

• Reduce computational complexity — Application of QEDs is likely to be a low-
complexity operation, both because they can make isolated inferences about
specific dependencies without considering all possible dependencies (as joint

11 “Assignment mechanism” refers to an explicit description of how variables receive their

values or two entities become related. For example, one could assume that the occurrence
of twins is randomly distributed throughout a population or that the securities industry reps
make decisions to join firms based on specific characteristics of the firm as well as their
own abilities.

18 D.D. Jensen

modeling does) and because specific designs exploit very small data sets to make
inferences. These inferences, in turn, can prune the search space for joint modeling.

7 Timeliness

This concept of combining work in machine learning and quasi-experimental design
appears to be novel. As one indicator, consider the data in Figure 6 showing the
results of several queries to Google Scholar, an online database of the full text of
technical articles in a wide variety of fields. Approximately 20,000 of the articles
mention machine learning or related technologies, and roughly a similar number
mention quasi-experimental design. However, only roughly 100 of those articles
(0.5%) include one or more terms from both queries. Of those, the vast majority
merely mentions one or both technologies rather than making simultaneous use of
both.

Fig. 6. The relative overlap of articles in machine learning and quasi-experimental design based
on hits in Google Scholar with queries of (”machine learning” OR “inductive logic
programming” OR “bayesian network” OR “graphical model”) and (”quasi-experimental” OR
“quasi experimental”)

Given the apparent value of combining machine learning and QED, why haven't
these methods been combined before? First, and most obviously, the methods do not
yet exist to automatically apply QEDs, and developing them will be a substantial
effort. Second, the majority of recent work in joint modeling has focused on
parameter estimation and efficient inference in undirected graphical models, rather
than on structure learning in directed models. The former topics are relevant to a
variety of relatively low-level processing tasks such as machine translation, speech
understanding, computer vision, information extraction, and information retrieval,
while the latter topics are the ones relevant to causal inference. Third, automatic
application of QEDs virtually requires data representations that encode relations,
time, and assignment mechanisms, and such representations have not been available
in machine learning until quite recently. Finally, the application of QEDs relies on
judicious and highly selective sampling, which runs directly counter to the prevailing
practice in machine learning and knowledge discovery of trying to use data sets in
their entirety.

 Beyond Prediction: Directions for Probabilistic and Relational Learning 19

While novel, this work builds on at least three key technical developments from the
past decade of work in machine learning and knowledge discovery. Specifically:

• Large observational data sets — Large observational data sets have become the
norm in the field, as well as in related fields such as social network analysis. These
data sets provide the scope and size necessary to identify the specific subsets of
data that correspond to particular QEDs. For example, in the case of the twin study
design mentioned above, a vast initial data set (or at least a population from which
data can be drawn) is needed both to identify a sufficient number of pairs of twins
and to ensure that a sufficient number of the pairs have at least one member who
have a particular disease or condition. Without such vast sets of data, many QEDs
could not be effectively applied.

• Relational data and knowledge representations — Automatic application of QEDs
would be impossible without the sort of rich and expressive data and knowledge
representations developed in the past decade12. Remarkably, essentially all of the
information needed to apply QEDs is encoded in at least one of these
representations, although no single representation appears to have every type of
information needed.

• Graph query languages — Several languages have been developed in the past
decade that can extract complex structures from large relational data sets. Unlike
traditional query languages (e.g., SQL), these languages return subgraphs (sets of
interconnected records, each of which exists in the original graph) rather than single
records created for the purpose of summarizing the matching records. This
capability is precisely what is needed for checking the applicability of QEDs and
carrying out the requisite data sampling.

Given these developments, we believe the time is right to attempt a fusion of machine
learning and QED.

8 Risks and Benefits

The risks of this research, while fairly high, are more than compensated for by the
large potential benefits of improved techniques for causal inference. Potential risks
include:

• Limited applicability of QEDs — It could be that QEDs only apply in a relatively
narrow range of circumstances. This appears very unlikely, given the vast number
of studies in the social sciences that use QEDs.

• Lack of synergy between QEDs and joint modeling — It is possible that there is
relatively little overlap between the cases where QEDs apply and the cases where
joint modeling cannot resolve dependencies.

• High complexity — It is possible that effective reasoning about when to apply
specific QEDs and joint modeling techniques will have higher complexity than

12 What is remarkable is not that these richer data representations exist and might be useful, but

that methods for joint modeling have been able to infer anything meaningful about causality
without them. Every other field of study that attempts to infer causality from observational
data implicitly uses such representations, even though the methods are entirely manual.

20 D.D. Jensen

doing joint inference alone. This seems very unlikely and, even if true, could
probably be addressed by using a set of heuristics rather than more precise
reasoning methods.

• Low power due to representational richness — Increasing the expressiveness of
model representations may increase the size of the search space so much that it will
overwhelm any gains from applying QEDs. However, all this means is that we have
developed imperfect methods for learning models that previously could not be
learned at all. In either case, the effort will significantly advance the state of the art
in causal inference.

The potential benefits include overcoming the limitations noted in the previous
sections, as well as some potential ancillary benefits:
• General theory of QED — Quasi-experimental design is currently a loose

collection of relatively unrelated designs. It is possible that, in the course of
developing automatic methods for applying QEDs, a unified and more general
framework for QED will emerge. This would represent not only a computational
advance, but a statistical and philosophical one as well.

• Theory of effective representations — This work may help identify a formal basis
for evaluating the quality of data representations. Specifically, good representations
are those that maximize the opportunities for applying QEDs (and thus being able
to infer causality). Evaluating representations is a long-standing problem in
machine learning, and has been particularly salient in recent work in statistical
relational learning.

• Unifying framework for interdisciplinary research — If successful, this work
would provide a common language for computer scientists, statisticians,
philosophers, and social scientists, magnifying the number of researchers working
toward common goals and accelerating progress in all of these fields.

Acknowledgments. Discussions with Andrew Fast, Lisa Friedland, Henry Goldberg,
Michael Hay, John Komoroske, Marc Maier, Jennifer Neville, Matthew Rattigan, and
Agustin Schapira contributed to the ideas in this paper. This material is based on
research sponsored by the Air Force Research Laboratory and the Distributive
Technology Office (DTO), under agreement number FA8750-07-2-0158. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusion
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Air Force Research Laboratory and the Distributive Technology Office (DTO), or the
U.S. Government.

References

1. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge (2000)
2. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press,

Cambridge (2007)
3. Neville, J., Simsek, Ö., Jensen, D., Komoroske, J., Palmer, K., Goldberg, H.: Using Relational

Knowledge Discovery To Prevent Securities Fraud. In: Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2005)

 Beyond Prediction: Directions for Probabilistic and Relational Learning 21

4. Fast, A., Friedland, L., Maier, M., Taylor, B., Jensen, D., Goldberg, H., Komoroske, J.:
Relational Data Pre-Processing Techniques For Improved Securities Fraud Detection. In:
To appear in The Proceedings of the 13th International Conference on Knowledge
Discovery and Data Mining (2007)

5. Friedland, L., Jensen, D.: Finding Tribes: Identifying Close-Knit Individuals From Employ-
ment Patterns. In: To appear in The Proceedings of the 13th International Conference on
Knowledge Discovery and Data Mining (2007)

6. Boring, E.: The Nature and History of Experimental Control. The American Journal of
Psychology 67(4), 573–589 (1954)

7. Fisher, R.: Statistical Methods for Research Workers. Oliver and Boyd (1925)
8. Holland, P., Rubin, D.: Causal Inference in Retrospective Studies. Evaluation Review 12,

203–231 (1988)
9. Rubin, D.: Formal Models of Statistical Inference For Causal Effects. Journal of Statistical

Planning and Inference 25, 279–292 (1990)
10. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT

Press, Cambridge (2000)
11. Campbell, D., Stanley, J., Gage, N.: Experimental and Quasi-experimental Designs for

Research. Rand McNally (1963)
12. Shadish, W., Cook, T., Campbell, D.: Experimental and Quasi-Experimental Designs.

Houghton Mifflin (2002)
13. Boomsma, D., Busjahn, A., Peltonen, L.: Classical Twin Studies and Beyond. Nature

Reviews Genetics 3, 872–882 (2002)

Learning Probabilistic Logic Models from

Probabilistic Examples (Extended Abstract)

Jianzhong Chen1, Stephen Muggleton1, and José Santos2

1 Department of Computing, Imperial College London, London SW7 2AZ, UK
{cjz, shm}@doc.ic.ac.uk

2 Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
jose.santos06@imperial.ac.uk

This paper describes research in Probabilistic Inductive Logic Programing (PILP).
The question investigated is whether PILP should always be used to learn from
categorical examples. The data sets used by most PILP systems and applications
have non-probabilistic class values, like those used in ILP systems. The main rea-
son for this is the lack of an obvious source of probabilistic class values. In this
context, we investigate the use of Abductive Stochastic Logic Programs (SLPs)
for metabolic network learning.

One of the machine learning approaches, which has been used to model the
inhibitory effect of various toxins in the metabolic network of rats, is abductive
ILP [3]. A group of rats are injected with a toxin and the changes on the con-
centrations of a number of chemical compounds are monitored over time. The
binary information on up/down regulations of metabolite concentrations is com-
bined with background knowledge representing a subset of the KEGG metabolic
diagrams. An abductive ILP program is used to suggest the inhibitory effects
occurring in the network.

Abductive SLPs [1] are a learning framework that supports abduction in SLPs
to provide a probability distribution over the abductive hypotheses based on
their possible worlds. An abductive SLP SA is a first order Stochastic Logic
Program that supports stochastic abduction. To learn an SA, we assume a
background knowledge theory B and a set of independently observed ground
probabilistic examples E. The learning constructs a set of labelled hypothesised
abducibles H = {p : ha} such that when added to SA, we have B ∧ H |= E
and the labels {p} are chosen to maximize the likelihood of H given E and B.
We perform SLP parameter estimation algorithms, using FAM [2], to learn the
probabilities for a given set of abducibles.

We have a scientific data set collected from some control cases as well as a
set of data points from treated cases. All the data are mutually independent.
Table 1 presents an algorithm applied to our rat metabolic network inhibition
data set for extracting the probabilistic examples from empirical data containing
control and treated cases.

The experiments include two tasks – learning abductive SLPC from categor-
ical examples and learning abductive SLPP from probabilistic examples. The
null hypotheses is that the predictive accuracy of an SLPP model does not
outperform an SLPC model for predicting the concentration level of metabolites
in a given rat metabolic network inhibition experiment. The empirical proba-

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 22–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Probabilistic Logic Models from Probabilistic Examples 23

Table 1. Algorithm of estimating empirical probabilities

1. Initialize a matrix MR with column=2 and row=number of metabolites;
2. for each metabolite α do:

2.1. Cα={concentration(α)}, a set of α values observed in the control cases;
2.2. Mα=Mean(Cα),SDα=StandardDeviation(Cα);
2.3. Tα={concentration′(α)}, a set of τα values observed in the treatment cases;
2.4. MR[α, 1] = Mα < Mean(Tα) ? Up : Down;
2.5. MR[α, 2]= Mean({pnorm(τα, Mα, SDα)});

3. Apply matrix MR in the abductive SLP learning

bilities are extracted from the raw data consisting of the concentration level
of 20 metabolites on 20 rats (10 control cases and 10 treated cases) after 8
hours of the injection of hydrazine. We apply a leave-one-out cross validation
process to do the prediction. The evaluation of the prediction models is made by
calculating the predictive accuracy of SLPC and SLPP against the estimated
empirical probabilities respectively. In particular, when evaluating only with the
categorical observations, SLPC and SLPP correctly predicted 9 and 11 out of 20
metabolites respectively, while the ILP model has 11 correct predictions; when
evaluating with the probabilistic examples, SLPP outperforms SLPC by 72.74%
against 68.31% in average predictive accuracy (with a significance level of 0.041).
By comparing the learned SLP model with the previous ILP model, at least two
promising new findings have been discovered in the SLP model, which can be
explained by the introduced empirical probabilities. In addition, the SLP models
learned not only the patterns but also the degree of belief of the patterns which
improve the insight from the learned models.

In this study, we revisit an application developed originally using ILP by
replacing the underlying logic program description with SLPs, one of the under-
lying PILP frameworks. In both the ILP and PILP cases a mixture of abduction
and induction are used. In conclusion, the null hypotheses were rejected on the
bases of the theoretical and experimental results. Our results demonstrate that
the PILP approach not only leads to a significant decrease in error accompanied
by improved insight from the learned result but also provides a way of learning
probabilistic logic models from probabilistic examples.

References

1. Arvanitis, A., Muggleton, S.H., Chen, J., Watanabe, H.: Abduction with stochastic
logic programs based on a possible worlds semantics. In: Short Paper Proceedings
of the 16th International Conference on Inductive Logic Programming, University
of Corunna (2006)

2. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learn-
ing 44(3), 245–271 (2001)

3. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.H.: Application of ab-
ductive ILP to learning metabolic network inhibition from temporal data. Machine
Learning 64, 209–230 (2006), (DOI: 10.1007/s10994-006-8988-x)

Learning Directed Probabilistic Logical Models Using
Ordering-Search

Daan Fierens, Jan Ramon, Maurice Bruynooghe, and Hendrik Blockeel

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium
{Daan.Fierens, Jan.Ramon, Maurice.Bruynooghe,

Hendrik.Blockeel}@cs.kuleuven.be

There is an increasing interest in upgrading Bayesian networks to the relational case,
resulting in directed probabilistic logical models. Many formalisms to describe such
models have been introduced and learning algorithms have been developed for several
such formalisms. Most of these algorithms are upgrades of the traditional structure-
search algorithm for Bayesian networks. However, in 2005 an alternative algorithm for
learning Bayesian networks, ordering-search, was introduced that performs at least as
well as structure-search while usually being faster. This motivated us to develop an
ordering-search algorithm for learning directed probabilistic logical models.

Our ordering-search algorithm is based on the observation that learning a model is
relatively easy when an ordering on the predicates is given and each predicate has as
potential parents only the predicates that precede it in the ordering (this implies that
only non-recursive models are learned). Given such an ordering, we can learn for each
predicate separately which of its potential parents are the effective parents. This can
simply be done by learning a logical probability tree for that predicate with as inputs all
potential parents. The effective parents are then determined as all the predicates that are
effectively used in the learned tree. Since often no ordering on the predicates is known
beforehand, ordering-search performs hillclimbing through the space of orderings to
determine the optimal ordering, in each step applying the above procedure.

We implemented the above ordering-search algorithm for the formalism Logical
Bayesian Networks. We also implemented a structure-search algorithm that is very
similar to the existing structure-search algorithms for related formalisms. We exper-
imentally compared both algorithms in terms of quality (likelihood of test data) and
compactness of the learned models and computational efficiency. We performed exper-
iments on two relational domains: a synthetic domain for which we generated datasets
of varying size by sampling from a given model and the UWCSE dataset.

Our experimental results show that ordering-search is competitive with structure-
search in terms of quality and compactness of the learned models. However, ordering-
search is significantly faster. We conclude that ordering-search is a good alternative to
structure-search for learning directed probabilistic logical models.

References

1. Fierens, D., Ramon, J., Bruynooghe, M., Blockeel, H.: Learning Directed Probabilistic Log-
ical Models: Ordering-Search versus Structure-Search. In: Kok, J.N., Koronacki, J., Lopez
de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, Springer, Heidelberg (2007)

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, p. 24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning to Assign Degrees of Belief in

Relational Domains

Frdric Koriche

LIRMM, Universit Montpellier II
161 Rue Ada, 34392 Montpellier Cedex 5, France

Frederic.Koriche@lirmm.fr

As uncertainty pervades the real world, it seems obvious that the decisions we
make, the conclusions we reach, and the explanations we offer are usually based
on our judgements of the probability of uncertain events such as success in a
new medical treatment or the state of the market. For example, if an agent
wishes to employ the expected-utility paradigm of decision theory in order to
guide its actions, it must assign subjective probabilities to various assertions.
Less obvious, however, is the question of how to elicit such degrees of beliefs.

The standard knowledge representation approach claims that the agent starts
its life-cycle by acquiring a pool of knowledge expressing several constraints
about its environment, such as properties of objects and relationships among
them. This information is stored in some knowledge base using a logical repre-
sentation language [1,4,8] or a graphical representation language [3,9,11]. After
this period of knowledge preparation, the agent is expected to achieve optimal
performance by evaluating any query with perfect accuracy. Indeed, according
to the well-defined semantics of the representation language, a knowledge base
provides a compact representation of a probability measure that can be used to
evaluate queries. For example, if we select first-order logic as our representation
language, the probability measure is induced by assigning equal likelihood to all
models of the knowledge base; the degree of belief of any given query is thus the
fraction of those models which are consistent with the query.

From a pragmatic perspective, the usefulness of a computational framework
for assigning subjective probabilities depends both on the accuracy of the belief
estimates and the efficiency of belief estimation. Unfortunately, in the standard
knowledge representation approach, the task of assigning subjective probabilities
can very much demanding from a computational point of view. In contrast, the
learning to reason (L2R) framework has recently emerged as an active research
field of ILP for dealing with the intractability of reasoning problems [5,6,12]. By
incorporating a role of inductive learning within reasoning, this approach stresses
the importance of combining the processes of knowledge acquisition and query
evaluation together. The main departure from the classical approach is that
knowledge is not ascribed a priori, in the purpose of describing an environment,
but instead acquired a posteriori, by experience, in order to improve the agent’s
ability to reason efficiently in its environment.

Following the L2R paradigm, this study aims at eliciting degrees of beliefs
in an inductive manner, using a computational model of learning. Namely, the
world, or the domain in question, is modeled as a probability distribution W on

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 25–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 F. Koriche

a space of relational interpretations. To acquire knowledge from the world, the
agent is given a “grace period” in which it can interact with its learning interface.
The purpose of the learning interface is to help the agent in concentrating its
effort toward finding a representation KB of W that is useful for evaluating
queries in some target query language Q. The reasoning performance is measured
only after this period, when the agent is presented with new queries from Q and
has to estimate their probability according to its representation KB .

We develop an online L2R algorithm which combines techniques in regression
learning and weighted model counting. The algorithm uses an exponentiated gra-
dient strategy [7] adapted for assigning probabilities to relational queries. The
total number of mistakes made by the reasoner depends only logarithmically in
the size of the target probability distribution, and hence linearly in the input
dimension. Thus, the learning curve of the reasoner is guaranteed to converge to
yield accurate estimations after a polynomial number of interactions. The key
idea behind efficient query evaluation lies in a representation of the “mistake-
driven” knowledge that allows tractable forms of weighted model counting [10].
Namely, for various fragments of the relational language R in [2], the computa-
tional cost of assigning degrees of belief is polynomial in the number of mistakes
made so far, and hence, the input dimension. This result highlights the interest
of the L2R framework by providing efficient solutions to relational probabilistic
reasoning problems that are provably intractable in the classical framework.

References

1. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge
bases to degrees of belief. Artificial Intelligence 87(1-2), 75–143 (1996)

2. Cumby, C.M., Roth, D.: Relational representations that facilitate learning. In: 17th
Int. Conf. on Knowledge Representation and Reasoning, pp. 425–434 (2000)

3. Jaeger, M.: Relational bayesian networks. In: Proc. of the 13th Conference on Un-
certainty in Artificial Intelligence, Providence, RI, pp. 266–273. Morgan Kaufmann,
San Francisco (1997)

4. Kersting, K., De Raedt, L.: Adaptive bayesian logic programs. In: 11th Int. Con-
ference on Inductive Logic Programming, pp. 104–117 (2001)

5. Khardon, R., Roth, D.: Learning to reason. ACM Journal 44(5), 697–725 (1997)
6. Khardon, R., Roth, D.: Learning to reason with a restricted view. Machine Learn-

ing 35(2), 95–116 (1999)
7. Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient descent for

linear predictors. Information and Computation 132(1), 1–63 (1997)
8. Poole, D.: Probabilistic horn abduction and Bayesain networks. Artificial Intelli-

gence 64, 81–129 (1993)
9. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),

107–136 (2006)
10. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted

model counting. In: 20h National Conference on Artificial Intelligence (AAAI), pp.
475–482 (2005)

11. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proc. of the 18th Conference in Uncertainty in Artificial Intelligence, Ed-
monton, Alberta, Canada, pp. 485–492. Morgan Kaufmann, San Francisco (2002)

12. Valiant, L.G.: Robust logics. Artificial Intelligence 117(2), 231–253 (2000)

Bias/Variance Analysis for Relational Domains

Jennifer Neville1 and David Jensen2

1 Departments of Computer Science and Statistics, Purdue University
2 Department of Computer Science, University of Massachusetts Amherst

Extended Abstract

Bias/variance analysis [1] is a useful tool for investigating the performance of
machine learning algorithms. Conventional analysis decomposes loss into errors
due to aspects of the learning process with an underlying assumption that there is
no variation in model predictions due to the inference process used for prediction.
This assumption is often violated when collective inference models are used for
classification of relational data.

In relational data, when there are dependencies among the class labels of
related instances, the inferences about one object can be used to improve the
inferences about other related objects. Collective inference techniques exploit
these dependencies by jointly inferring the class labels in a test set. This ap-
proach can produce more accurate predictions than conditional inference for
each instance independently, but it also introduces an additional source of error,
both through the use of approximate inference algorithms and through variation
in the availability of test set information. To date, the impact of inference error
on relational model performance has not been investigated.

We propose a new bias/variance framework1 that decomposes marginal
squared-loss error into components of both the learning process, used to es-
timate the model, and the inference process, used for prediction. To illustrate
the decomposition, consider the following procedure. We measure the variation
of model predictions for an instance x in two ways. First, when we generate syn-
thetic data we record the data generation probability as the optimal prediction
for x as y∗. Next, we record marginal predictions for x from models learned on
different training sets, allowing the optimal predictions of related instances (y∗

R)
to be used during inference. These predictions form the learning distribution,
with a mean learning prediction for x of yLm. Finally, we record predictions for
x from models learned on different training sets, where each learned model is ap-
plied for prediction a number of times on the test set. These predictions form the
total distribution, with a mean total prediction for x of yTm. The model’s learn-
ing bias for x is BL(x) = (y∗−yLm)2; the inference bias is BI(x) = (yLm−yTm)2.
The model’s learning variance is VL(x) = E[(yLm−yL)2]; the total variance is de-
fined analogously VT (x) = E[(yTm −y)2]; the inference variance is the difference
between the total variance and the learning variance VI(x) = VT (x) − VL(x).

1 We refer the reader to the longer version of this paper [4] for a complete discussion
of the decomposition, methodology, and experimental results.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 27–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 Bias/Variance Analysis for Relational Domains

We evaluate relational model performance within this framework, using both
synthetic and real-world datasets, by measuring squared loss and decomposing it
into bias and variance components for each model. We compare the performance
of three models: relational Markov networks (RMNs) [5], relational dependency
networks (RDNs) [2], and latent group models (LGMs) [3].

The experiments measure model performance over a range of data character-
istics and show that (1) inference can be a significant source of error, and (2)
the models exhibit different types of errors as data characteristics are varied. In
particular, graph structure, autocorrelation dependencies, and amount of test
set labeling, all affect relative relational model performance. LGMs are more
robust to sparse labeling and perform well when the underlying data exhibit
high clustering. When the underlying clustering is low, LGMs experience high
learning bias due to poor group identification. RDNs, applied with Gibbs sam-
pling, experience high variance on test data with sparse labeling, but perform
well across a wide range of graph structures. RMNs, applied with loopy belief
propagation, have higher bias on densely connected graphs, but are more robust
to sparse test set labeling.

The analysis suggests a number of directions to pursue to improve model
performance—either by incorporating properties of the inference process into
learning or through modification of the inference process based on properties of
learning. To improve LGM performance, we need to improve the initial identi-
fication of clusters. This may be achieved through the development of a joint
learning procedure that clusters for groups while simultaneously estimating at-
tribute dependencies in the model. To improve RDN performance, we need to
improve inference when there are few labeled instances in the test set. This may
be achieved by using meta-knowledge about the test set to bias the feature se-
lection process during learning. Finally, to improve RMN performance, we need
to improve inference accuracy when the underlying graph connectivity is high.
This may be achieved through the use of approximate inference techniques other
than loopy belief propagation, or through the use of aggregate features in clique
templates (that summarize cluster information) rather than using redundant
pairwise features.

References

1. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4, 1–58 (1992)

2. Neville, J., Jensen, D.: Dependency networks for relational data. In: Proceedings of
the 4th IEEE International Conference on Data Mining, pp. 170–177 (2004)

3. Neville, J., Jensen, D.: Leveraging relational autocorrelation with latent group mod-
els. In: Proceedings of the 5th IEEE International Conference on Data Mining, pp.
322–329 (2005)

4. Neville, J., Jensen, D.: A bias-variance decomposition for collective inference models.
Machine Learning Journal, under submission (invited)

5. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence,
pp. 485–492 (2002)

Induction of Optimal Semantic Semi-distances for
Clausal Knowledge Bases

Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito

LACAM – Dipartimento di Informatica – Università degli studi di Bari
Campus Universitario, Via Orabona 4 – 70125 Bari, Italy

{claudia.damato,fanizzi,esposito}@di.uniba.it

Abstract. Several activities related to semantically annotated resources can be
enabled by a notion of similarity, spanning from clustering to retrieval, match-
making and other forms of inductive reasoning. We propose the definition of a
family of semi-distances over the set of objects in a knowledge base which can
be used in these activities. In the line of works on distance-induction on clausal
spaces, the family is parameterized on a committee of concepts expressed with
clauses. Hence, we also present a method based on the idea of simulated anneal-
ing to be used to optimize the choice of the best concept committee.

1 Introduction

Assessing semantic similarity between objects can support a wide variety of instance-
based tasks spanning from case-based reasoning and retrieval to inductive generaliza-
tion and clustering.

As pointed out in related surveys [16], initially, most of the proposed similarity mea-
sures for concept descriptions focus on the similarity of atomic concepts within simple
concept hierarchies or are strongly based on the structure of the terms for specific FOL
fragments [5]. Alternative approaches are based on related notions of feature similarity
or information content. All these approaches have been specifically aimed at assessing
similarity between concepts (see also [10]). In the perspective of exploiting similarity
measures in inductive (instance-based) tasks like those mentioned above, the need for a
definition of a semantic similarity measure for instances arises [1, 2, 12].

Recently, semantic dissimilarity measures for specific FOL fragments have been pro-
posed which turned out to be practically effective for the targeted inductive tasks. Al-
though these measures ultimately rely on the semantics of primitive concepts as elicited
from the knowledge base, still they are partly based on structural criteria (a notion of
normal form) which determine also their main weakness: they are hardly portable to
deal with other FOL fragments.

Therefore, we have devised a new family of dissimilarity measures for semantically
annotated resources, which can overcome the aforementioned limitations. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces defined by means of
the hypothesis-driven distance induction method [14]. Another source of inspiration
was provided by the indiscernibility relationships investigated rough sets theory [11].

Namely, the proposed measures are based on the degree of discernibility of the in-
put objects with respect to a committee of features, which are represented by concept

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 29–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 C. d’Amato, N. Fanizzi, and F. Esposito

descriptions. As such, these new measures are not absolute, since they depend on both
the choice (and cardinality) of the features committee and the knowledge base they are
applied to. Rather, they rely on statistics on objects that are likely to be maintained
by the knowledge base management system, which can determine a potential speed-
up in the measure computation during knowledge-intensive tasks. Differently from the
original idea [14], we give a definition of the notion of projections which is based on
model-theory in LP.

Furthermore, we also propose ways to extend the presented measures to the case of
assessing concept similarity by considering concepts as represented by their extension,
i.e. the set of their instances. Specifically, we recur to notions borrowed from clustering
[6] such as the medoid, the most centrally located instance in a concept extension w.r.t.
a given metric.

Experimentally1, it may be shown that the measures induced by large committees
(e.g. including all primitive and defined concepts) can be sufficiently accurate when
employed for classification tasks even though the employed committee of features were
not the optimal one or if the concepts therein were partially redundant. Nevertheless,
this has led us to investigate on a method to optimize the committee of features that
serve as dimensions for the computation of the measure. To this purpose, the employ-
ment of genetic programming and randomized search procedures was considered. Fi-
nally we opted for an optimization search procedure based on simulated annealing [7],
a randomized approach that can overcome the problem of the search being caught in
local minima.

The remainder of the paper is organized as follows. The definition of the family of
measures is proposed in Sect. 2, where we prove them to be semi-distances and extend
their applicability to the case of concept similarity. In Sect. 3, we illustrate and discuss
the method for optimizing the choice of concepts for the committee of features which
induces the measures. The effectiveness of the method is demonstrated in a preliminary
experimentation (see Sect. 4) on the task of similarity search. Possible developments
are finally examined in Sect. 5.

2 A Family of Semi-distances for Instances

In the following, we assume that objects (instances), concepts and relationships among
them may be defined in terms of a function-free (yet not constant-free) clausal language
such as DATALOG, endowed with the standard semantics (see [9] for reference).

We will consider a knowledge base K = 〈P , D〉, where P is a logic program repre-
senting the schema, with concepts (entities) and relationships defined through definite
clauses, and the database D is a set of ground facts concerning the world state. In this
context, without loss of generality, we will consider concepts as described by unary
atoms. Primitive concepts are defined in D extensionally by means of ground facts
only, whereas defined concepts will be defined in P by means of clauses. The set of the
objects occurring in K is denoted with const(D).

1 Such experiments, regarding a nearest neighbor search task, are not further commented here
for the sake of brevity.

Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases 31

As regards the necessary inference services, our measures will require performing
instance-checking, which amounts to determining whether an object belongs (is an in-
stance) of a concept in a certain interpretation.

2.1 Basic Measure Definition

It can be observed that instances lack a syntactic structure that may be exploited for a
comparison. However, on a semantic level, similar objects should behave similarly with
respect to the same concepts, i.e. similar assertions (facts) should be shared. Conversely,
dissimilar instances should likely instantiate disjoint concepts.

Therefore, we introduce novel dissimilarity measures for objects, whose rationale
is the comparison of their semantics w.r.t. a fixed number of dimensions represented
by concept descriptions (predicate definitions). Namely, instances are compared on the
grounds of their behavior w.r.t. a reduced (yet not necessarily disjoint) committee of fea-
tures, represented by a collection of concept descriptions, say F = {F1, F2, . . . , Fm},
which stands as a group of discriminating features expressed in the language taken into
account. In this case, we will consider unary predicates which have a definition in the
knowledge base.

Following [14], a family of totally semantic distance measures for objects can be
defined for clausal representations. In its simplest formulation, inspired by Minkowski’s
metrics, these functions can be defined as follows:

Definition 2.1 (family of measures). Let K be a knowledge base. Given a set of concept
descriptions F = {F1, F2, . . . , Fm}, a family {dF

p}p∈IN of functions dF
p : const(D) ×

const(D) �→ [0, 1] is defined as follows:

∀a, b ∈ const(D) dF
p(a, b) :=

1
m

[
m∑

i=1

| πi(a) − πi(b) |p
]1/p

where ∀i ∈ {1, . . . , m} the i-th projection function πi is defined by:

∀a ∈ const(D) πi(a) =
{

1 K � Fi(a)
0 otherwise

The superscript F will be omitted when the set of features is fixed.

2.2 Discussion

We can prove that these functions have the standard properties for semi-distances:

Proposition 2.1 (semi-distance). For a fixed feature set and p ∈ IN, function dp is a
semi-distance.

Proof. In order to prove the thesis, given any three objects a, b, c ∈ const(D) it must
hold that:
1. dp(a, b) ≥ 0 positivity
2. dp(a, b) = dp(b, a) symmetry
3. dp(a, c) ≤ dp(a, b) + dp(b, c) triangular inequality
Now, we observe that:

32 C. d’Amato, N. Fanizzi, and F. Esposito

1. trivial, by definition
2. trivial, for the commutativity of the operators involved
3. it follows from the properties of the power function:

dp(a, c) =
1
m

[
m∑

i=1

| πi(a) − πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a) − πi(b) + πi(b) − πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a) − πi(b) |p + | πi(b) − πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a) − πi(b) |p +
m∑

i=1

| πi(b) − πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a) − πi(b) |p
]1/p

+
1
m

[
m∑

i=1

| πi(b) − πi(c) |p
]1/p

= dp(a, b) + dp(b, c)

As such, these are only a semi-distances. Namely, it cannot be proved that dp(a, b) =
0 iff a = b. This is the case of indiscernible instances with respect to the given set of
features F [11].

Here, we make the assumption that the feature-set F may represent a sufficient num-
ber of (possibly redundant) features that are able to discriminate really different objects.
As hinted in [14], redundancy may help appreciate the relative differences in similarity.

Compared to other proposed distance (or dissimilarity) measures, the presented func-
tions are not based on structural (syntactical) criteria; namely, they require only decid-
ing whether an object can be an instance of the concepts in the committee.

Note that the computation of projection functions can be performed in advance (with
the support of suitable DBMSs) thus determining a speed-up in the actual computation
of the distance measure. This is very important for the integration of these measures in
instance-based methods which massively use distances, such as in case-based reasoning
and clustering.

2.3 Extensions

The definition above might be further refined and extended by recurring to model the-
ory. Namely, the set of Herbrand models of the knowledge base MK ⊆ 2|BK| may be
considered, where BK stands for its Herbrand base.

Now, given two instances a and b to be compared w.r.t. a certain feature Fi, i =
1, . . . , m, we might check whether they can be distinguished in the world represented
by a Herbrand interpretation I ∈ MK: I |= Fi(a) and I |= Fi(b). Hence, a distance
measure should count the cases of disagreement, varying the Herbrand models of the
knowledge base: The resulting definition for a dissimilarity measure is the following:

Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases 33

∀a, b ∈ const(D) dF
p(a, b) :=

1
m · |MK|

[∑
I∈MK

m∑
i=1

| πI
i (a) − πI

i (b) |p
]1/p

where the projections are computed for a specific world state as encoded by a Herbrand
interpretation I:

∀a ∈ const(D) πI
i (a) =

{
1 Fi(a) ∈ I
0 otherwise

Following the rationale of the average link criterion used in clustering [6], the mea-
sures can be extended to the case of concepts, by recurring to the notion of medoids.
The medoid of a group of objects is the object that has the highest similarity w.r.t. the
others. Formally. given a group G = {a1, a2, . . . , an}, the medoid is defined:

m = medoid(G) = argmin
a∈G

n∑
j=1

dF
p(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups of
objects obtained by retrieval Ri = {a ∈ const(D) | K |= Ci(a)}, and their resp.
medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure dF

p (for some p > 0 and
committee F). Then we can define the function for concepts as follows:

dF
p(C1, C2) := dF

p(m1, m2)

Alternatively, a metric can be defined based on the single-link and complete-link
principles [6]:

dF
p(C1, C2) =

min{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

max{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

3 Optimization

Although the measures could be implemented according to the definitions, their effec-
tiveness and also the efficiency of their computation strongly depends on the choice of
the feature committee (feature selection). Indeed, various optimizations of the measures
can be foreseen as concerns their parametric definition.

Among the possible committees, those that are able to better discriminate the objects
in the ABox ought to be preferred:

Definition 3.1 (good feature set). Let F = {F1, F2, . . . , Fm} be a set of concept
descriptions. We call F a good feature set for the knowledge base K = 〈T , A〉 iff
∀a, b ∈ const(D) ∃i ∈ {1, . . . , m} : πi(a) �= πi(b).

Note that, when the function defined in the previous section adopts a good feature set,
it has the properties of a metric on the related instance-space.

Since the function strongly depends on the choice of concepts included in the com-
mittee of features F, two immediate heuristics can be derived:

34 C. d’Amato, N. Fanizzi, and F. Esposito

1. controlling the number of concepts of the committee (which has an impact also on
efficiency), including especially those that are endowed with a real discriminating
power;

2. finding optimal sets of discriminating features of a given cardinality, by allowing
also their composition employing the specific refinement operators.

Both these heuristics can be enforced by means of suitable ILP techniques especially
when knowledge bases with large sets of instances are available. Namely, part of the
entire data can be drawn in order to induce optimal F sets, in advance with respect to
the application of the measure for other specific purposes as those mentioned above.
The adoption of genetic programming has been considered for constructing optimal
sets of features. Yet these algorithms are known to suffer from being possibly caught in
local minima. An alternative may consist in employing a different probabilistic search
procedure which aims at a global optimization. Thus a method based on simulated
annealing [7] has been devised, whose algorithm is reported in Fig. 1.

Essentially the algorithm searches the space of all possible feature committees start-
ing from an initial guess (determined by MAKEINITIALFS(K)) based on the concepts
(both primitive and defined) currently referenced in the knowledge base. The loop con-
trolling the search is repeated for a number of times that depends on the temperature
which gradually decays to 0, when the current committee can be returned. The current
feature set is iteratively refined calling a suitable procedure RANDOMSUCCESSOR().
Then the fitness of the new feature set is compared to that of the current one deter-
mining the increment of energy ΔE. If this is positive then the candidate committee
replaces the current one. Otherwise it will be replaced with a probability that depends
on ΔE.

As regards the heuristic FITNESSVALUE(F), it can be computed as the average dis-
cernibility factor [11] of the objects w.r.t. the feature set. For example, given a set of
objects IS = {a1, . . . , an} ⊆ const(D) the fitness function may be defined:

FITNESSVALUE(F) = k ·
∑

1≤i<j≤n

m∑
h=1

| πh(ai) − πh(aj) |

where k is a normalization factor which may be set to: (1/m) (n · (n − 1)/4 − n),
depending on the number of couples of different instances that really determine the
fitness measure.

As concerns finding candidates to replace the current committee (RANDOMSUC-
CESSOR()), the function was implemented by recurring to simple transformations of a
feature set:

– adding (resp. removing) a concept C: nextFS ← currentFS ∪ {C}
(resp. nextFS ← currentFS \ {C})

– randomly choosing one of the current concepts from currentFS, say C, and
replacing it with one of its refinements C′ ∈ REF(C)

Refining concept descriptions is language-dependent. For the adopted clausal logic, var-
ious refinement operators have been proposed in the literature [9]. Complete operators
are to be preferred to ensure exploring the whole search-space.

Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases 35

FeatureSet OPTIMIZEFEATURESET(K, ΔT)
input K: Knowledge base

ΔT : function controlling the decrease of temperature
output FeatureSet
local currentFS: current Feature Set

nextFS: next Feature Set
Temperature: controlling the probability of downward steps

begin
currentFS ← MAKEINITIALFS(K)
for t ← 1 to ∞ do

Temperature ← Temperature − ΔT (t)
if (Temperature = 0)

return currentFS
nextFS ← RANDOMSUCCESSOR(currentFS,K)
ΔE ← FITNESSVALUE(nextFS) − FITNESSVALUE(currentFS)
if (ΔE > 0)

currentFS ← nextFS
else // replace FS with given probability

REPLACE(currentFS, nextFS, eΔE/Temperature)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure

4 Experiments on Similarity Search

In order to prove the effectiveness of the distance coupled with the optimization pro-
cedure, an experimentation was performed on the task of similarity search [16], i.e.
searching instances that can be answers to relational queries by means of a notion of
distance. We intended to evaluate both the effectiveness of the distance and the impact
of its optimization phase.

To this purpose, a relational kNN algorithm was devised, similar to RIBL [2], with
a voting procedure weighted by the distance of the query instance from its neighbors.
The Java implementation exploits external Prolog libraries2 for the reasoning services
required for determining the distance between individuals.

Four relational datasets from very different domains were selected: a small one was
artificially generated for the PHASE TRANSITION [3], (problem pt4444), the Uni-
versity of Washington CSE dept. dataset (UW-CSE) [13], one from the Mutagenesis
datasets [15], and one concerned the layout structure of scientific papers (SCI-DOCS)
[4]. The details3 about these datasets are reported in Tab. 1. A simple discretization had
to be preliminary operated on the numerical attributes, if present. for the measure cur-
rently does not handle these cases. Hence, the number of concepts was increased w.r.t.
the original dataset.

2 JPL 3. See http://www.swi-prolog.org
3 As stated in Sect.2, concepts correspond to unary predicates while predicates with larger arity

are generically referred to as relations. Individuals correspond to the objects denoted by the
constant names, i.e. the resources to be searched.

http://www.swi-prolog.org

36 C. d’Amato, N. Fanizzi, and F. Esposito

Table 1. Details about the datasets that were employed in the experiments

dataset #concepts #relations #individuals
PHASE TRANSITION 1 4 400

UW-CSE 9 20 2208
SCI-DOCS 30 9 4585

MUTAGENESIS 68 2 9292

Table 2. Experimental results: cardinality of the induced feature set and average outcomes
(± standard deviation)

dataset | F | %correct %false pos. %false neg.
PHASE TRANSITION 6 99.97 ± 0.13 0.00 ± 0.00 0.03 ± 0.13

UW-CSE 9 99.01 ± 1.92 0.05 ± 0.08 0.94 ± 1.94
SCI-DOCS 5 85.49 ± 9.06 1.66 ± 1.87 12.85 ± 8.96

MUTAGENESIS 11 98.68 ± 1.92 0.08 ± 0.12 1.24 ± 1.94

We intended to assess the accuracy of the answers obtained inductively from the kNN
procedure compared to the correct (deductive) ones. Preliminarily, an optimal distance
was obtained using the procedure described in the previous section, to be employed both
for selecting the nearest neighbors and for determining their weights. A 5% sample of
instances was drawn from the dataset for performing the distance optimization task
finding a proper feature set.

In the successive phase, a number of 20 queries (clauses whose head defines a new
concept) were randomly generated provided that they had non-empty answer sets for
the head variable. Then, search was simulated by testing class-membership w.r.t. the
query concepts employing the kNN procedure based on the distance. The experiment
was repeated applying a 10-fold cross-validation setting.

In all of the runs the number of nearest neighbors k that determine the classification
of the test instance was set to

√|TrSet|, where TrSet is the training set related to the
given fold. The cardinality of the committees determined in the first phase and the
average results of the classification are reported in Table 2.

We note that the performance is quite good with a decay for the case of the SCI-
DOCS dataset, which is determined by the larger variance: some queries were perfectly
answered while some yielded poorer results. In terms of retrieval measures, we can say
that the procedure suffers more in terms of recall rather than precision. the good results
were probably due to the regularity of the information in the various datasets: for each
individual the same amount of information is known, which helps to discern among
them. More sparsity (incomplete information) would certainly decrease the distance
acuity and, hence, the overall performance to the task.

The good performance on such datasets, despite some of them are known to be par-
ticularly difficult for learning methods, is due to the fact that for the considered task
a characterization of an unknown concept is not to be learnt. Rather, it is an input of
the inductive procedure based on discriminative features that help to discern between
member and non-member instances.

Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases 37

Table 3. Experimental results (no optimization phase): average outcomes of the experiment

dataset %correct %false pos. %false neg.
PHASE TRANSITION N/A N/A N/A

UW-CSE 94.88 0.7 4.42
SCI-DOCS 81,29 2,65 16,06

MUTAGENESIS 94.76 0.55 4,69

It is also possible to compare the number of new features induced for the distance
measure and the overall number of (primitive or defined) concepts in the KB. In the
case of the MUTAGENESIS dataset, it needed only about 15% of the available concepts.
However it is to be admitted that many of them had been added to the original dataset
during the discretization process.

Employing smaller committees (with comparable performance results) is certainly
desirable for the sake of an efficient computation of the measure. In order to asses the
potential of the measure when employing basically the concepts already contained in the
knowledge base, the same experiment with the same settings (10-fold cross validation)
was repeated with no preliminary optimization phase; instead, for the comparison, we
randomly selected the same amount of pre-defined concepts in the knowledge base as
the size of the optimal set (indicated in the second column of Tab. 2). The average
results obtained are reported in Tab. 3. The PHASE TRANSITION dataset had only one
predefined concept all predicates are relations with arity ≥ 2) which excluded it from
the possibility of a comparison.

The performance in terms of time was quite satisfactory, however various optimiza-
tions can be implemented for this specific search-task such as, for instance, computing
and storing the distances in appropriate data structures [16] (e.g. kD-trees or ball-trees)
that may speed-up the overall retrieval process.

5 Conclusions and Ongoing Work

In the line of past works on distance-induction, we have proposed the definition of a
family of semi-distances over the instances in a clausal knowledge base. The measures
are parameterized on a committee of concepts that can be selected by the proposed
randomized search method.

Possible subsumption relationships between clauses in the committee may be ex-
plicitly exploited in the measure for making the relative distances more accurate. The
extension to the case of concept distance may also be improved. Particularly, the mea-
sure should be extended to cope with numeric information which abounds in biologi-
cal/chemical datasets.

The measures may have a wide range of application in distance-based methods to
knowledge bases. Currently we are exploiting the measures in conceptual clustering
algorithms where clusters will be formed by grouping instances on the grounds of
their similarity assessed through the measure, triggering the induction of new emerging
concepts.

38 C. d’Amato, N. Fanizzi, and F. Esposito

Another possibility is also the extension to learning relational kernels which encode
a notion of similarity, as in kFOIL [8], where measure induction and performance eval-
uation are intertwined.

References

[1] Bisson, G.: Learning in fol with a similarity measure. In: Swartout, W. (ed.) Proceedings of
the 10th National Conference on Artificial Intelligence, pp. 82–87. MIT Press, Cambridge
(1992)

[2] Emde, W., Wettschereck, D.: Relational instance-based learning. In: Saitta, L. (ed.) Pro-
ceedings of the 13th International Conference on Machine Learning, ICML 1996, pp. 122–
130. Morgan Kaufmann, San Francisco (1996)

[3] Esposito, F., Ferilli, S., Fanizzi, N., Basile, T., Di Mauro, N.: An exhaustive matching pro-
cedure for the improvement of learning efficiency. In: Horváth, T., Yamamoto, A. (eds.)
ILP 2003. LNCS (LNAI), vol. 2835, pp. 112–129. Springer, Heidelberg (2003)

[4] Esposito, F., Ferilli, S., Fanizzi, N., Basile, T., Di Mauro, N.: Incremental learning and
concept drift in INTHELEX. Journal of Intelligent Data Analysis 8(1/2), 133–156 (2004)

[5] Hutchinson, A.: Metrics on terms and clauses. In: van Someren, M., Widmer, G. (eds.)
ECML 1997. LNCS, vol. 1224, pp. 138–145. Springer, Heidelberg (1997)

[6] Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3),
264–323 (1999)

[7] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

[8] Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple relational
kernels. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI
2006, AAAI Press, Menlo Park (2006)

[9] Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS
(LNAI), vol. 1228. Springer, Heidelberg (1997)

[10] Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In: Page, D.L.
(ed.) ILP 1998. LNCS, vol. 1446, pp. 250–260. Springer, Heidelberg (1998)

[11] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic
Publishers, Dordrecht (1991)

[12] Ramon, J., Bruynooghe, M.: A framework for defining distances between first-order logic
objects. In: Technical Report CW 263. Department of Computer Science, Katholieke Uni-
versiteit Leuven (1998)

[13] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136
(2006)

[14] Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) ILP
1997. LNCS, vol. 1297, pp. 264–272. Springer, Heidelberg (1997)

[15] Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in
a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th Inter-
national Workshop on Inductive Logic Programming, ILP 1994, number 237 in GMD-
Studien. pp. 217–232 (1994)

[16] Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Ap-
proach. Springer, Heidelberg (2007)

Clustering Relational Data Based on

Randomized Propositionalization

Grant Anderson and Bernhard Pfahringer

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract. Clustering of relational data has so far received a lot less at-
tention than classification of such data. In this paper we investigate a sim-
ple approach based on randomized propositionalization, which allows for
applying standard clustering algorithms like KMeans to multi-relational
data. We describe how random rules are generated and then turned into
boolean-valued features. Clustering generally is not straightforward to
evaluate, but preliminary experimental results on a number of standard
ILP datasets show promising results. Clusters generated without class
information usually agree well with the true class labels of cluster mem-
bers, i.e. class distributions inside clusters generally differ significantly
from the global class distributions. The two-tiered algorithm described
shows good scalability due to the randomized nature of the first step
and the availability of efficient propositional clustering algorithms for
the second step.

Keywords: clustering, propositionalization, randomization.

1 Introduction

Clustering is a process by which instances are divided into groups, appropriate
groupings being determined by some distance measure. Relational clustering ap-
plies this process to relational data. Such distance measures are more complex to
determine for relational data than for propositional data, as relational data can-
not easily be fitted to a Euclidean framework, and therefore use inter-instance
similarity to determine clusters. RDBC [8], for example, uses the distance mea-
sure of RIBL [3, 5], which recursively compares the relational elements of the
data until features can be propositionally compared. [6] describes a metric for
terms and clauses, and relational distance measures can also be derived from
relational kernels [4, 14].

Clustering of relational data has so far received a lot less attention than clas-
sification of such data. One approach based on a relational clustering tree as a
variant of the relational tree learner Tilde is described in [1]. In this paper, we
present a two-tiered approach to relational clustering that obviates the need for
a relational distance measure, allowing us to apply standard propositional clus-
tering algorithms to multi-relational data. In the first step we propositionalize[9]
the relational data using randomly generated first-order rules (similar to the
relational association rules generated by Warmr [7]), which are then converted

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 39–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 G. Anderson and B. Pfahringer

into boolean features, based on their coverage. The generation process restricts
the rules to be within certain coverage minima and maxima to avoid overly
specific or general rules, respectively. The rules are also generated in a manner
that encourages even coverage across the data. In the second step, the resulting
propositional dataset is clustered using a standard propositional clusterer such
as KMeans [10].

The next section will detail the algorithm, Section 3 reports on experiments,
and the final section summarizes and outlines future work.

2 Method

The RRC (Randomized Relational Clustering) algorithm comprises two tiers: a
first level which generates random rules aiming to cover all examples as uniformly
as possible, and a second level which turns these rules into boolean features for a
propositional representation which acts as input for any propositional clustering
algorithm.

The experiments reported below employed standard KMeans using standard
Euclidean distance.

Random rules are generated in the following way: at each stage a literal or
test is chosen uniformly at random with the following restriction: for a literal
exactly one variable/argument must be an already present variable, all others
will be new variables. Tests on the other hand may not add any new variables.
Tests include the usual equal and not-equal comparisons to other variables or
theory constants, as well as range comparisons for numeric arguments.

To ensure that the randomly generated rules actually allow for clustering,
some constraints are imposed on the generation process: rules must cover a
user-defined minimum number of examples and may not cover more than a
user-defined maximum, either. This prevents against both very specific and also
against very general rules; worst cases would be universally true rules or rules
covering to just a single example. These constraints operate on individual rules.
Furthermore examples should be covered by roughly equal numbers of rules. This
“uniformity of coverage” is a ruleset-level constraint. To obtain such uniform
coverage, random rules are generated in small batches, then the most uniformity-
preserving non-zero subset of such a batch of rules is added to the current rule-
set. The basic algorithm for RRC is given in Algorithm 1.

The complexity of RRC is the sum of the complexity of both stages. Usually,
when using propositionalization in ILP, the propositionalization stage dominates
the total complexity, and this is true for RRC as well. Even though generating
a random rule is extremely fast, its coverage still has to be determined both
for checking the coverage constraints and uniformity of coverage, as well as to
generate the propositional data-set. In the worst case this coverage computa-
tion can be exponential, even for a single rule. The complexity of propositional
clustering algorithms on the contrary is often linear or quadratic at worst. Still,
in practice we find that RRC enjoys very acceptable runtimes, and at times,

Clustering Relational Data Based on Randomized Propositionalization 41

Algorithm 1. Pseudocode for the RRC algorithm
while Number of rules in ruleset is less than the minimum do

while Number of rules in batch is less than the minimum do
Generate a Rule
if Rule is within coverage constraints then

Add Rule to rule batch
end if

end while
Calculate the most uniform subset of rules in the current rule batch
Add those rules to the ruleset

end while
use ruleset to generate boolean-valued propositional dataset
apply any propositional clustering algorithm

especially for larger rulesets, the propositional clustering can actually dominate
over the propositionalization stage.

3 Experiments

An evaluation of RRC on several datasets has been conducted, always generat-
ing random rules for the full dataset, and then clustering the resulting proposi-
tional data using KMeans [10] using Euclidean distance. The following standard
ILP datasets were used: Mutagenesis (with and without regression-unfriendly in-
stances), Musk1, Cancer (using only the Atom and Bond tables) and Diterpenes.
For Mutagenesis and Cancer we only use low-level structural information as rep-
resented by atoms and bonds, we do not include any global properties (e.g. lumo
or logP) nor predefined functional groups. In the case of the Diterpenes, three
versions were generated: all pairwise combinations of the three largest classes
called 3, 52, and 54.

RRC is compared to two other relational clustering approaches. RSD [16] like
RRC can generate boolean-valued propositional datasets which can then be clus-
tered by standard KMeans. Contrary to RRC’s random heuristic approach, RSD
generates rules via systematic search. RSD usually produces a smaller number of
rules than RRC, which can be attributed to RSD’s non-duplication and connec-
tivity requirements. The minimum coverage for RSD’s features was set to 25% of
the number of instances in the dataset, just like for RRC. In a second experiment
coverage rates for RSD were determined such that RSD would roughly generate
the same number of unique rules as RRC does. The second system to compare
RRC to is the Relational KMeans (RKM) algorithm of RelWeka [15], which im-
plements the RIBL [5] distance measure, a proper distance for relational data.
Whereas RSD and RRC are very similar, RKM is a rather different approach on
more direct relational clustering, which does not rely on propositionalization.

To study the influence of the number of clusters that number was varied from
2 up to 50. There exists no single universally agreed upon measure for clustering
quality. As true class labels are available for all datasets, which are not used during

42 G. Anderson and B. Pfahringer

Fig. 1. Penalized Error Rates

clustering, one possible measure of cluster quality is the agreement of clusters with
classes. Clearly one would expect better accuracies with more clusters, as it should
be easier to find smaller class-pure clusters than larger ones. One caveat here is that

Clustering Relational Data Based on Randomized Propositionalization 43

Fig. 2. Average Silhoutte Widths

when taking the majority class of each cluster as its “label”, clusters with only one
example will automatically be correct. Therefore a Penalized Error Rate was used
that treats instances in single-instance clusters as errors.

44 G. Anderson and B. Pfahringer

Fig. 3. Penalized error rates for various RRC rule set sizes

Fig. 4. Error rates for different coverages, and the class distribution across 20 clusters
for MutaRF

Clustering Relational Data Based on Randomized Propositionalization 45

The other measure used to compare clusterings is the average silhouette width
[13], which is the average of the silhouette values for all instances in a dataset.
The silhouette value si for an instance i is calculated according to the following
formula:

si =
bi - ai

max(ai,bi)
(1)

Where:
ai = md(i,ci) (ci = the cluster containing i)
bi = min(md(i,cj �=i)) for all clusters j not containing instance i
md(i,c) = the mean distance from instance i to all instances in cluster c

Silhouette values lie between -1 and +1, with lower values indicating an in-
creasing likelihood that the instance could have been better placed in the cluster
represented by b. In the case where a cluster contains only one instance, the sil-
houette value of that instance is defined to be zero, again in an attempt to avoid
overly positive evaluation of single-instance clusters.

For measuring cluster qualities all clusterers were run ten times with different
random seeds, and the averaged results are reported. The results of this evalu-
ation for four of the seven datasets are depicted in Figures 1 and 2. The other
datasets show very similar qualitative behaviour. RSDa denotes the results for
RSD datasets with a number of attributes matching the number of unique at-
tributes RRC generates, while RSDc denotes the results for RSD datasets with
a minimum coverage matching that of RRC.

The trends visible for penalized error rates follow our expectations – higher
number of clusters lead to smaller penalized error rates, except on the Musk1
dataset, where its small number of instances leads to higher numbers of single-
instance clusters as the number of clusters increases. Indeed, the penalized error
rate begins to increase at around 30 clusters for Musk1. It should be noted
that the penalized error rates for RRC are actually quite competitive to error
rates that have been reported in the literature for relational classifiers on these
datasets, except for Musk1.

For Cancer, Mutagenesis(RF), Mutagenesis(All) and Musk1, RRC and RSD
produce fairly similar error rates, but RRC performs better on the three Diter-
penes subsets. A possible reason for RSD’s lower performance on Diterpenes
could be the specific way background knowledge was formulated for RSD which
seems to not produce some well-performing rules as found by RRC. Conversely,
RelKMeans and RRC produce fairly similar results on the Diterpenes subsets,
but RelKMeans performs worse on the remaining datasets. This is at least partly
due to RelKMeans’ tendency to produce more single-instance clusters than either
of the other two algorithms.

The average silhouette width for RRC and RSD (with 25% minimum cover-
age) tends to increase as the number of clusters increases. On Musk1 the op-
posite occurs, as increasing numbers of single-instance clusters actually cause the

46 G. Anderson and B. Pfahringer

silhouette width to decrease. RelKMeans generally produces much lower sil-
houette values than the other two algorithms, which may also be related to
the number of single-instance clusters produced: not only do the instances in a
single-instance cluster have a silhouette value of zero themselves, they can also
significantly lower the silhouette width of instances in larger clusters that lie in
close proximity. Additionally the silhouette values for RelKMeans might also be
affected by specific properties of its non-Euclidean distance measure. A closer
investigation of this problem is left to future work.

To study the sensitivity of RRC to its user-settable parameters, a series of
experiments were performed varying both the number of rules used as well as the
minimum and maximum coverage values for single rules. Here we present only
results for one problem: class 3 versus class 52 of the Diterpenes. Qualitatively
all other sets show similar behavior, but with different optimal parameter values.
Figure 3 shows the behavior of RRC for larger and larger number of rules. Num-
bers up to 10 are clearly not sufficient, as the error-levels quickly flatten out, not
improving for larger number of clusters. Larger sizes show better performance.
For this specific dataset 100 rules seem to perform slightly better than 200 rules,
indicating that overfitting could be an issue for RRC.

The left figure in Figure 4 shows the effects of varying coverage limits. Again
for this dataset having too low a minimum, which allows for very specialized
rules to be created, seems to hurt performance. Rules that have to cover at least
10% and not more than half of all the data perform best. But the default setting
of 25% to 75% does well, too.

To get a further insight into the quality of clustering, the right figure in
Figure 4 depicts the class distribution for a particular 20 cluster partition of the
188 regression-friendly compounds from the mutagenicity dataset using only 10
random rules. Still, 8 of the 20 clusters are class-pure, all for the active class,
though. Two of the random features generated are:

active(MolId) :-
bond(MolId,_,_,2),
atom(MolId,_,_,27,_).

active(MolId) :-
atom(MolId,AtomId1,_,QuantaType1,Charge),
Charge >= 0.172,
Atom(MolId,AtomId2,_,QuantaType2,_),
AtomId2 != AtomId1,
QuantaType1 == QuantaType2.

Respectively, they represent compounds with at least one double bond plus
an atom of Quanta type 27, as well as compounds with two distinct atoms of
the same Quanta type, where one must have a charge of at least 0.172. Picking
e.g. cluster number 4, which comprises four examples of the same class, their
boolean feature values are:

Clustering Relational Data Based on Randomized Propositionalization 47

1 2 3 4 5 6 7 8 9 10
f, t, f, f, t, t, t, t, t, t example1
f, t, f, f, t, t, t, t, t, t example2
f, t, f, f, t, t, f, t, t, t example3
f, t, f, f, t, t, t, t, t, t example4

Notice that these four examples are almost identical under this propositional-
ization, with only one exception for attribute 7 for example3. Figure 5 shows the
structure formulas for these four compounds, and indeed three of the four are
almost identical, only one nitro-group is positioned differently for each of them,
and the fourth compound (example3, third from the left) is also very similar in
structure to the other three.

4 Summary and Future Work

Relational clustering has not received much attention in ILP so far. This paper
has described a two-tiered approach based on randomized propositionalization
and an arbitrary propositional clustering algorithm and compared the results
to two other approaches to relational clustering. The experimental results re-
ported above look promising. This research will be extended into various direc-
tions. First and foremost comparisons to more standard clustering approaches
are needed. Kernels for relational data [4] could be used together with clustering
algorithms like KernelKMeans [2]. The rule generation process could be replaced
by either a relational association rule finder like WarmR [7], or class-blind vari-
ants of relational rule learners like Foil [12] or Progol [11]. Lastly, this approach
to class-blind propositionalization might also be useful for classification prob-
lems, especially in lazy or semi-supervised settings, as the generation process
guarantees good coverage of all data including the unlabeled portion of it. More
work is also needed to determine the suitability of this approach for different
types of data. All experiments reported here used data-sets comprising distinct
examples with no linkage between single examples. There are applications where
links between examples can carry essential information. RRC will have to be
evaluated for such data as well.

Fig. 5. The four, all active compounds of cluster 4

48 G. Anderson and B. Pfahringer

References

[1] Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees.
In: Proceedings of the 15th International Conference on Machine Learning, pp.
55–63 (1998)

[2] Camastra, F., Verri, A.: A Novel Kernel Method for Clustering. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27(5), 801–804 (2005)

[3] Emde, W., Wettschereck, D.: Relational instance-based learning. In: Proceedings
of the 13th International Conference on Machine Learning, pp. 122–130 (1996)

[4] Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and Distances for Structured Data.
Machine Learning 57 (2004)

[5] Horváth, T., Wrobel, S., Bohnebeck, U.: Relational Instance-Based Learning with
Lists and Terms. Machine Learning 43, 53–80 (2001)

[6] Hutchinson, A.: Metrics on terms and clauses. In: Proceedings of the 9th European
Conference on Machine Learning, pp. 138–145 (1997)

[7] King, R.D., Srinivasan, A., Warmr, L.D.: A Data Mining Tool for Chemical Data
Journal of Computer Aided Molecular Design. 15, 173–181 (2001)

[8] Kirsten, M., Wrobel, S.: Relational Distance-Based Clustering. In: Proceedings of
the 8th International Workshop on Inductive Logic Programming, pp. 261–270
(1998)

[9] Kramer, S., Lavrac, N., Flach, P.: Propositionalization Approaches to Relational
Data Mining. Relational Data Mining. Springer, Heidelberg (2001)

[10] MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate
Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Sta-
tistics and Probability, vol. 1, pp. 281–297 (1967)

[11] Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Spe-
cial issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

[12] Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990)

[13] Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis Journal of Computational and Applied Mathematics, vol. 20,
pp. 53–65 (1987)

[14] Woźnica, A., Kalousis, A., Hilario, M.: Kernels over Relational Algebra Structures.
In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 588–598. Springer, Heidelberg (2005)

[15] Woźnica, A., Kalousis, A., Hilario, M.: Distance and (Indefinite) Kernels for Sets
of Objects. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, Springer,
Heidelberg (2006)

[16] Zelezny, F., Lavrac, N.: Propositionalization-Based Relational Subgroup Discov-
ery with RSD. Machine Learning 62(1-2), 33–63 (2006)

Structural Statistical Software Testing with

Active Learning in a Graph

Nicolas Baskiotis and Michele Sebag

CNRS − INRIA − Université Paris-Sud
LRI Bat 490, F-91405 Orsay, France

Nicolas.Baskiotis, Michele.Sebag@lri.fr

Abstract. Structural Statistical Software Testing (SSST) exploits the
control flow graph of the program being tested to construct test cases.
Specifically, SSST exploits the feasible paths in the control flow graph,
that is, paths which are actually exerted for some values of the program
input; the limitation is that feasible paths are massively outnumbered by
infeasible ones. Addressing this limitation, this paper presents an active
learning algorithm aimed at sampling the feasible paths in the control
flow graph. The difficulty comes from both the few feasible paths ini-
tially available and the nature of the feasible path concept, reflecting
the long-range dependencies among the nodes of the control flow graph.
The proposed approach is based on a frugal representation inspired from
Parikh maps, and on the identification of the conjunctive subconcepts in
the feasible path concept within a Disjunctive Version Space framework.
Experimental validation on real-world and artificial problems demon-
strates significant improvements compared to the state of the art.

Keywords: Structured Sampling, Structured Active Learning, Struc-
tural Statistical Software Testing, Disjunctive Version Space, Machine
Learning Application to Computer Science.

1 Introduction

Autonomic Computing is becoming a new application domain for Machine Learn-
ing (ML), motivated by the increasing complexity of current systems [1]. Ideally,
systems should be able to automatically adapt, maintain and repair themselves;
a first step to this end is to build self-aware systems, using ML to automatically
model the system behavior. Similar trends are observed in the field of software
design; various ML approaches have been proposed for Software Testing [2,3],
Software Modeling [4] and Software Debugging [5].

Resuming an earlier work [3], this paper is motivated by Statistical Struc-
tural Software Testing (SSST) [6]. SSST exploits the control flow graph of the
program being tested (Fig. 1) to construct test cases; specifically, test cases are
derived from the feasible paths in the control flow graph, that is, paths which are
actually exerted for some values of the program input. However, for reasonable
size programs there is a huge gap between the syntactical description of the pro-
gram (the control flow graph) and its semantics (the feasible paths). In practice,

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 49–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 N. Baskiotis and M. Sebag

the fraction of feasible paths might be as low as 10−5 for small size programs,
making it inefficient to uniformly sample the paths in the control flow graph.

The characterization of the feasible path region faces several difficulties. First
of all, the target concept (i.e. the feasible path region) is non-Markovian: a
path is infeasible as it violates some subtle, long-range dependencies among the
program nodes. A frugal propositional representation extending Parikh maps [7]
was proposed in [3], allowing one to express node dependencies in a compact way.
However, using either a relational or a propositional representation, supervised
learning was found to fail; this failure was blamed on the very few feasible paths
initially available, due to their high computational cost.

Meanwhile, SSST is primarily interested in acquiring more feasible paths,
suggesting that an active learning approach [8] might be more relevant than a
supervised learning one. In [3], a probabilistic generate-and-test approach called
EXIST (Exploration−Exploitation Inference for Software Testing), built on the
top of the extended Parikh map representation was proposed to generate new
feasible paths. The limitation of this approach is due to the highly disjunctive
nature of the target concept, blurring the probability estimates. In the current
paper, the latter limitation is addressed using a bottom-up algorithm inspired
from the Version Space [9], called MLST for ML-based Sampling for Statistical
Structural Software Testing, which identifies the conjunctive subconcepts in the
target concept. Empirical validation on real-world and artificial problems shows
that MLST significantly improves on the state of the art.

The paper is organized as follows. Section 2 introduces the formal background
and prior knowledge related to the SSST problem; it discusses the limitations of
supervised learning for SSST and describes the extended Parikh representation.
Section 3 gives an overview of the MLST algorithm. Section 4 reports on the
empirical validation of MLST on real-world and artificial problems, and discusses
the approach compared to the state of the art. The paper concludes with some
perspectives for further research.

2 Position of the Problem

This section introduces statistical structural software testing (SSST), situates
the problem in terms of supervised learning, and describes the extended Parikh
map representation used in the following.

2.1 Statistical Structural Software Testing

Many Software Testing methods are based on the generation of test cases, where
a test case associates a value to every input variable of the program being tested.
For each test case, the program output is compared to the expected output (e.g.,
determined after the program specifications) to find out misbehaviors or bugs
in the program implementation. The test quality thus reflects the coverage of
the test cases (see below). Statistical testing methods, enabling intensive test
campaigns, most often proceed by sampling the input space. However, uniform

Structural Statistical Software Testing with Active Learning in a Graph 51

sampling is bound to miss the exception branches (e.g. calling the division routine
with denominator = 0), the measure of which is null. More generally, uniformly
sampling the input domain does not result in a good coverage of the execution
paths of the program. In order to overcome this limitation, a method combining
statistical testing and structural analysis, based on the control flow graph of the
program being tested (Fig. 1) was proposed by [6].

vf

IN
IT

v
a0

t1
e1

i2
i3

t4
e4

i5
i2

2

i2
1

s6

b6
b2

3

i7
i2

4

t8
e8

t2
5

e2
5

t9
e9

t1
1

i1
2

e1
1

e1
3

i1
8

t2
6

e2
6

e2
8

i2
9

i3
0

i3
3

i3
4

I5 I7

I2
7

i0I0 C
1

C
4

I2
2

B
23

B
6

s2
3

I2
4

C
25

C
26

C
8

i2
0

C
9

C
11

i1
0

C
13

C
28i2

7
i3

2

t1
3

t2
8

i1
9

i1
4

C
15

t1
5

e1
5

i3
1

i1
7

i1
6

Fig. 1. Program FCT4 includes 36 nodes and 46 edges

The control flow graph provides a syntactical representation of the program.
Formally, the control flow graph is a Finite State Automaton (FSA) noted (Σ, V)
where:
• Σ is the set of program nodes, a node being either a condition or a block of
instructions, and
• V specifies the allowed transitions between the nodes.
For every node v in Σ, Suc(v) denotes the set of successors of v, i.e. the set of
all nodes w such that transition (v, w) belongs to V . A program path noted s
is represented as a finite length string on Σ, obtained by iteratively choosing a
node among the successors of the current node until reaching the final node vf .

The semantics of the program is expressed by the fact that not every path
in the FSA is feasible, i.e. is such that the path is actually executed for some
values of the program input variables. The infeasibility of a given path arises as
it violates some dependencies between different parts of the program or it does
not comply with the program specifications. Two most general causes for path
infeasibility are the XOR and the Loop patterns.
XOR pattern. Given a program where two if nodes are based on some (un-
changed) expression, the successors of these nodes will be correlated in every
feasible path: if the successor of the first if node is the then (respectively,
else) node, then the successor of the second if node must be the then (resp.
else) node. Such patterns, referred to as XOR patterns, express the possibly
long-range dependencies between the fragments of the program paths.

Loop pattern. The number of times a loop is executed happens to be restricted
by the semantics of the application; e.g. when the problem involves 18 or 19

52 N. Baskiotis and M. Sebag

uranium beams to be controlled, the control procedure will be executed exactly
18 or 19 times [10]. This pattern is referred to as Loop pattern.

An upper bound T on the length of the considered paths is set by the software
testing expert for practical reasons, although path length is usually unbounded
(since programs generally involve repeat and while instructions). Thanks to this
upper bound, one can use well-known results from labelled combinatorial struc-
tures [11] to uniformly sample the T -length paths in the control flow graph [6].
Eventually, every path is rewritten as a Constraint Satisfaction Problem, express-
ing the set of conditions on the input variables of the program ensuring that the
path is exerted. If the Constraint Solver (CS) finds a solution, the path is labelled
feasible and the solution precisely is the test case; otherwise the path is infeasible.

As already mentioned, the main limitation of this approach is when the frac-
tion of feasible paths is tiny, which is the general case for medium length pro-
grams [6]. In such cases, the number of retrieved test cases remains insufficient
while the computational effort dramatically increases; it needs some days of
computation to find out a few dozen or hundred test cases. The software testing
expert then inspects the program, manually decomposing the control flow graph
and/or adding conditions in order to make it easier to find feasible paths.

2.2 SSST and Supervised Learning

In order to support Statistical Structural Software Testing, one possibility is to use
supervised Machine Learning, exploiting a sample of labelled paths as training set.
From such a training set E = {(si, yi), si ∈ ΣT , yi ∈ {−1, +1}, i = 1 . . . , n},
where si is a path with length at most T and yi is 1 iff si is feasible, supervised
ML can be made to approximate the program semantics, specifically to construct
a classifier predicting whether some further path is feasible or infeasible. Such a
classifier would be used as a pre-processor filtering out the paths that are deemed
infeasible and thus significantly reducing the CS computational cost.

In a supervised learning perspective, the SSST application presents some
specificities. Firstly, it does not involve noise, i.e. the oracle (constraint solver)
does not make errors1. Secondly, the complexity of the example space is huge
with respect to the number of available examples. In most real-world problems,
Σ includes a few dozen symbols; a few dozen paths are available, each a few
hundred symbols long. The number of available paths is limited by the labelling
cost, i.e. the runtime of the constraint solver (on average a few seconds per
program path). Thirdly, the data distribution is severely imbalanced (infeasible
paths outnumber the feasible ones by several orders of magnitude). Lastly, the
label of a path depends on its global structure; many more examples would be
required to identify the desired long-range dependencies between the transitions,
within a Markovian framework. Specifically, probabilistic FSAs and likewise sim-
ple Markov models can hardly model the infeasibility patterns such as the XOR

1 Three classes should be considered (feasible, infeasible and undecidable) as in all
generality the CSPs are undecidable. However the undecidable class depends on the
constraint solver and its support is negligible in practice.

Structural Statistical Software Testing with Active Learning in a Graph 53

or Loop patterns. While Variable Order Markov Models [12] could accommodate
such patterns, they are ill-suited to the sparsity of the initial data available.

In summary, supervised learning is impaired by the poor quality of the avail-
able datasets relatively to the complexity of the instance space.

2.3 Extended Parikh Representation

A frugal and flexible representation inspired by Parikh maps was proposed in [3]
in order to characterize conjunctions of XOR and Loop patterns in a compact
way. Parikh maps [7,13] characterize a string from its histogram with respect to
alphabet Σ; to each symbol v in Σ is associated an integer attribute | · |v defined
on Σ∗, where |s|v is the number of occurrences of v in string s.

As this representation is clearly insufficient to account for long range depen-
dencies in the strings, additional attributes are defined. To each pair (v, i) in
Σ × IN is associated an attribute | · |v,i, from Σ∗ onto Σ, where |s|v,i is the
successor of the i-th occurrence of the v symbol in s, or vf if the number of v
occurrences in s is less than i. Extended Parikh maps have a low representation

Table 1. Extended Parikh representation. An example

v ∈ Σ | · |v : Σ∗ �→ IN |s|v = #v in s
(v, i) ∈ Σ × IN | · |v,i : Σ∗ �→ Σ |s|v,i = successor of i-th occurrence of v

s = vwvtxytx → | · |v | · |w | · |t ... | · |v,1 | · |v,2 | · |w,1 | · |t,1
s 2 1 2 w t v x

complexity; the number of propositional attributes is |Σ| × k where k << T is
the maximal number of occurrences of any symbol in a T -length string.

However, supervised learning within extended Parikh maps fails too. A partial
conclusion is that supervised ML requires more feasible paths than normally
available in SSST problems. Meanwhile, SSST is also primarily interested in
building feasible paths. A new learning goal is thus defined.

3 Overview

This section describes the MLST system aimed at the generation of new feasible
paths based on the initial training set E . “Feasible path” and “positive example”
are interchangeably used in the remainder of the paper.

3.1 Principle

Every new path s is constructed iteratively; s is initialized to the start symbol
(the root node of the control flow graph); at each time step a new symbol is
selected and concatenated to s. Let v be the current last symbol in s, and

54 N. Baskiotis and M. Sebag

denote s.w the concatenation of s and w. In each time step one should select the
symbol w such that s.w is the prefix of many feasible paths; formally:

Select w∗ = argmax{pw, w ∈ Suc(v)}
pw = Pr(s′ feasible |Prefix(s′) = s.w) (1)

However, the above criterion suffers from two limitations. Firstly, the set of
strings s′ with prefix s.w is almost always empty after the first iterations (due
to the size of the training set E); and in the first iterations, this criterion
would lead to duplicate the known feasible paths whereas the goal is to find
new feasible paths. This first limitation was addressed as i) the conditioning on
Prefix(s′) = s.w was replaced by a generalization thereof, and ii) an ε-greedy
selection was used (section 3.3).

The second limitation comes from the fact that, after prior knowledge
(section 2.1) the feasible path concept involves the conjunction of quite a few
XOR patterns. With respect to the extended Parikh map representation, the
target concept tc thus involves the disjunction of many conjunctive subconcepts:

tc = C1 ∨ . . . ∨ CK

When several s′ belonging to different Ci are used to estimate pw, this estimate
can be misleading; mixing the evidence derived from paths belonging to differ-
ent Ci does not provide reliable indications, for the same reason as selecting
the attribute with maximal entropy in a decision tree usually is inappropriate
when learning a disjunctive concept. In the EXIST algorithm [3], this limitation
was partly addressed by using the Seeding heuristics, stochastically extracting
subsets of positive examples such that their least general generalization does
not cover any negative example, referred to as admissible subsets; in each step,
conditional probabilities pw are computed from a single admissible subset. The
rationale for the Seeding heuristics is that an admissible subset should mostly
contain positive examples belonging to the same subconcept Ci; in practice,
this heuristics was found to significantly improve the EXIST performances [3].
However, the Seeding heuristics suffers from two limitations. On the one hand,
the initial negative examples are insufficient and do not prevent the admissible
subsets from spanning over several subconcepts Ci, thus corrupting the pw; on
the other hand, the Seeding heuristics tends to oversample the subconcepts Ci

which are best represented in the training set.
The MLST algorithm addresses both above limitations through a principled

characterization of all subconcepts Ci represented in the training set, through
the Init module (section 3.2).

Finally, MLST is organized as follows. The Init module (section 3.2) aims at
a maximally specific disjunctive description of the initial feasible paths (the S
set, in terms of Disjunctive Version Space); it constructs conjunctive subcon-
cepts Ĉ1, . . . ĈJ , where with high probability each Ĉi is a specialization of some
Cj represented in the training set2. The Generalization module (section 3.4)
2 The identification of conjunctive subconcepts not represented in the training set is

left for further study.

Structural Statistical Software Testing with Active Learning in a Graph 55

independently generalizes each Ĉi. Both modules rely on the Constrained Ex-
ploration Module (section 3.3). Both Init and Generalization modules interact
with the Oracle (the constraint solver), labelling every newly generated path as
feasible or infeasible.

3.2 Init Module

The Init module is inspired from the Version Space framework [9]. Let the binary
predicate R(s, s′) be defined as true iff both s and s′ belong to some conjunctive
subconcept Ci. The Init module thus computes a stochastic estimate of R(s, s′)
noted R̂(s, s′), and uses it to construct cliques of the positive examples. With
high probability (depending on the accuracy of R̂, see below), all examples in
such a clique belong to the same Ci; therefore their least general generalization
(lgg) defines a specialization of Ci, noted Ĉi.

The construction of relation R̂ proceeds as follows. By definition, R(s, s′)
holds iff lgg(s, s′) is correct, i.e. does not cover any infeasible path. Prior knowl-
edge on the problem domain suggests that the target concept has a tiny and
fragmented coverage (section 2.1); therefore, if R(s, s′) does not hold, then any
path generated in lgg(s, s′) will be infeasible with high probability. Accordingly,
a stochastic approximation of R(s, s′) is implemented (Fig. 3.2), calling the
Constrained Exploration Module to independently generate and label p paths
in lgg(s, s′). If all p paths are feasible, R̂(s, s′) returns true, otherwise it returns
false and the infeasible paths are added to the set E− of infeasible paths. Clearly
R̂(s, s′) implements a complete but incorrect approximation of R(s, s′); its ac-
curacy (1 - Pr(R̂(s, s′)|¬R(s, s′))) goes to 0 exponentially with p; a typical value
for p in the experiments (section 4) is p = 2.

After R̂(s, s′) has been computed for all pairs of training feasible paths, the
maximal clique Ĉ(s) covering each feasible training path s (not already covered)
is computed using a standard greedy algorithm (Fig. 3). At the j-th step, Vj

includes all examples related by R̂ to all elements in Sj (with S0 = {s}). If Vj is

Input: set E− of infeasible paths.
Parameter p ∈ IN

For all s′′ ∈ E−

If s′′ is covered by lgg(s, s′)
return False

For i = 1 to p
s′′= C.Exploration (lgg(s, s′))
If (label(s′′) = infeasible)

Add s′′ to E−

Return False
Return True

Fig. 2. Routine R̂(s, s′)

S0 = {s}
j = 1

Vj = {s′/R̂(s′, s′′)for all s′′ ∈ Sj−1}
Degreej(s

′) = |{s′′ in V̂j/R(s′, s′′)}|
While Vj is not empty

s′ = argmaxVj{Degree(s′′)}
Sj = Sj−1 ∪ {s′}
Vj+1 = Vj \ {s′}
Increment j

EndWhile
Return Sj

Fig. 3. Routine �C(s)

56 N. Baskiotis and M. Sebag

empty, stop; otherwise, the example in Vj related to most examples in Vj by R̂ is
selected, added to Sj and removed from Vj. Finally, the Init module produces a
set of cliques noted Ĉi. It is straightforward to show that with high probability,
for each Ck represented in the training set there will be some Ĉi such that Ĉi is
a specialization of Ck; the probability exponentially increases with the number
of training examples in Ck and parameter p used to compute R̂.

By abuse of notations, any clique Ĉ is viewed as both a set of feasible paths
and their lgg.

3.3 Constrained Exploration Module

Given a constraint h on paths, the Constrained Exploration Module aims to
generate a path s such that h(s) holds. This module is called by the Init module
using a syntactic constraint (h(s) ≡ s belongs to lgg(s′, s′′)) and in the Gener-
alization module using a semantic constraint (h(s) ≡ s is feasible).

Along the same lines as in section 3.1, the Constrained Exploration Module
proceeds iteratively, initializing path s to the starting symbol and selecting in
each time step the successor of the last symbol in s noted v, in order to maximize
the probability for s to ultimately satisfy h. While one might want to select w
maximizing the frequency of h(s′) over all strings s′ with prefix s.w, (eq. 1), in
most cases there is no such s′. The conditioning on Prefix(s′) = s.w is thus
relaxed. Let v and i respectively denote the last symbol in s, and its number of
occurrences (|s|v = i). Condition Prefix(s′) = s.w is generalized as: s′ is such
that the successor of the i-th occurrence of the v symbol is w and the number of
occurrences of w in s′ is strictly greater than in s (|s′|v,i = w)AND(|s′|w > |s|w).
If such paths s′ exist among the available ones (training examples and examples
generated along the process), frequency qw is defined as:

qw = Pr(h(s′) | ((|s′|v,i = w)AND(|s′|w > |s|w))) (2)

Note that, as only standard programs are considered, any symbol (program
node) has at most two successors. Letting w and w′ denote the two successors
of the last node v, the node selection routine thus considers three cases:
• If both qw and qw′ are defined, the node with maximal frequency is selected
(select argmax{qw, w ∈ Suc(v)};
• If neither qw nor qw′ is defined, one node is selected randomly;
• Otherwise (say that qw is defined and qw′ is not):

∗ in the Init framework, w is selected;
∗ in the Generalization framework, an ε-greedy selection is used: w is selected

with probability 1 − ε and w′ is selected with probability ε.
Obviously, this procedure does not guarantee that path s will satisfy h(s);

however, as every newly generated path is added to the available examples,
and accordingly bias the computation of qw, a fast convergence toward paths
complying with constraint h was empirically observed (see section 4).

Structural Statistical Software Testing with Active Learning in a Graph 57

3.4 Generalization Module

The Generalization module aims at maximally generalizing every Ĉ produced
by the Init module, by generating new paths s “close” to Ĉ and adding them to
Ĉ if they are labelled feasible.

This module exploits the Constrained Exploration Module with constraint
h(s) ≡ s is feasible, with a single difference: qw is estimated from i) only feasi-
ble paths satisfying Ĉ; ii) only infeasible paths generated when generalizing Ĉ.
This restriction in the computation of qw overcomes the limitations discussed in
section 3.1, due to the disjunctive nature of the target concept.

Several heuristics have been investigated as alternatives to the ε-greedy selec-
tion in the Constrained Exploration Module; for instance, a more sophisticated
Exploration vs Exploitation trade-off based on the multi-armed bandit UCB al-
gorithm [14] was considered; however, UCB-like approaches were penalized as
the “reward” probability is very low (being reminded that the fraction of feasible
paths commonly is below 10−5).

4 Experimental Validation

This section presents the experimental setting and goals, and reports on the
results of MLST.

4.1 Experimental Setting

MLST is first validated on the real-world Fct4 program, including 36 nodes and
46 edges (Fig. 1). The ratio of feasible paths is circa 10−5 for a maximum path
length T = 250. Fct4 is a fragment of a program used for a safety check in a
nuclear plant [10].

For the sake of extensive validation, a stochastic problem generator was also
designed, made of two modules. The first module defines the “program syntax”,
made of a control flow graph generated from a probabilistic BNF grammar3.
The second module constructs the “program semantics”, or target concept tc,
determining whether a path in the above graph is feasible. After prior knowledge
(section 2.1), the target concept is a conjunction of XOR patterns and Loop pat-
terns. In order to generate satisfiable target concepts, a set P of paths uniformly
generated from the control flow graph is first constructed; iteratively, i) one se-
lects a XOR concept covering a strict subset of P ; ii) paths not covered by the
XOR concept are removed from P . Finally, the target concept tc is made of the
conjunction of the selected XOR concepts and the Loop concepts satisfied by
the paths in P . The coverage of each conjunction is measured on an independent
set of 100, 000 paths uniformly generated in the extension of tc, using [11].
3 Three non-terminal nodes were considered (the generic structure block, the if and

the while structures), together with two terminal nodes (the Instruction and the
Condition node. The probabilities on the production rules control the length and
depth of the control flow graph. Instructions are pruned in such a way that each
node has exactly two successor nodes; lastly, each node is associated a distinct label.

58 N. Baskiotis and M. Sebag

Ten artificial problems are considered, with coverage ratio ranging in [10−15,
10−3], number of nodes in [20, 40] and path length in [120, 250]. Ten runs are
launched for each problem, considering independent training sets, made of the set
Ei of the initial 50 feasible paths, plus 50 infeasible paths For each Ĉ identified
by the Init module, the Generalization module is launched 400 times. Set Ef

gathers all feasible paths, the initial ones and the newly generated ones.
For each conjunctive subconcept C of the target concept represented in the

training set, the performance of the algorithm is assessed by comparing the initial
and final coverage of C, defined as follows. Let Ci (respectively Cf) denote the
lgg of all paths in Ei

⋂
C (resp. Ef

⋂
C). The initial coverage of C, noted i(C),

is the fraction of paths in C that belong to Ci; symmetrically the final coverage
of C noted f(C) is the fraction of paths in C that belong to Cf . Both i(C) and
f(C) are estimated from a uniform sample of 10,000 examples in C, generated
after [11].

For a better visualization, the average final coverage is computed using a
Gaussian convolution over all subconcepts represented in the training set
(Ei

⋂
C �= ∅):

f(x) =

∑
C∩E�=∅ f(C)exp(−κ(x − i(C))2)∑

C∩E�=∅ exp(−κ(x − i(C))2)

The standard deviation is similarly computed. In both cases, κ is set to 100.
The goal of the experiments is to compare MLST with the former EXIST

algorithm presented in [3] and to assess the added value of the Init module.
More precisely, the performance will be examined with respect to the initial
coverage of the target subconcepts in the training set.

4.2 Experimental Results

Fig. 4.(a) displays the final vs initial coverage provided by MLST on 10 artificial
problems, using the ε-Greedy generalization module with ε = .5, together with
the standard deviation; complementary experiments show the good stability of
the results for ε ranging in [.1, .8]. More precise results are presented in Table 2,
showing that MLST efficiently samples the conjunctive subconcepts that are
represented in the training set; when the initial coverage of the subconcept is
tiny to small, the gain ranges from 5 to 2 orders of magnitude. A factor gain of
3 is observed when the initial coverage is between 10% to 30%.

Fig. 4.(b) reports the gain obtained on the real-world Fct4 problem compar-
atively to EXIST [3] for 10 independent runs with 3000 calls to the constraint
solver. The gain of MLST is considered excellent by the software testing experts.
The computational effort ranges from 3 to 5 minutes (on PC Pentium 3Ghz) for
the Init Module and is less than 3 minutes for 400 calls to the generalization
module (excluding labelling cost).

As shown in Tables 2 and 3, MLST significantly and consistently improves on
EXIST. In practice, EXIST does not much improve the coverage of subconcepts
which are poorly represented in the training set; actually, on the FCT4 problem

Structural Statistical Software Testing with Active Learning in a Graph 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
in

a
l
C

o
v
e
ra

g
e

Initial Coverage

EXIST
MLST

(a) Final vs initial coverage ±σ
on artificial problems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ML
ST

 C
ov

er
ag

e
EXIST Coverage

(b) Comparison with EXIST
on Fct4

Fig. 4. MLST (ε=.5): (a) Final vs initial coverage, averaged on 10 artificial problems
× 10 runs; (b) Comparison with EXIST on the Fct4 problem (10 runs)

Table 2. MLST: Coverage gain averaged on 10 artificial problems × 10 runs

[0, 10−4] [10−4, 10−3] [10−3, 10−2] [10−2, 10−1] [.1, .3] [.3, .6] [.6, 1]

EXIST log(f/i) 2.6 ± 2.3 2.6 ± 2.4 1.1 ± 1. 1.1 ± 1.
f/i 2.6 ± 1.8 1.6 ± .6 1.1 ± .1

MLST log(f/i) 5.7 ± 1.2 5.3 ± 1.2 3.7 ± .86 2 ± .72
f/i 3 ± .1 1.6 ± .3 1.1 ± .1

Table 3. Final vs initial coverage of EXIST and MLST on Fct4 averaged on 10 runs

Initial coverage [0, .05] [.05, .15] [.2, .4] [.4, .55]

EXIST final coverage .01 ± .01 .1 ± .06 .44 ± .16 .71 ± .05
MLST final coverage .25 ± .1 .45 ± .07 .78 ± .07 .83 ± .07

the coverage of small subconcepts (i < .15) is left unchanged by EXIST whereas
MLST reaches a coverage of .25 for i in [0, .05] and .45 for i in [.05, .15]. This differ-
ence is explained as the stochastic Seeding heuristics used in EXIST must wait for
useful negative examples to be generated, in order to construct useful admissible
subsets; and in any case, it tends to increase the coverage of subconcepts that are
already well represented in the training set. In contrast, MLST starts by charac-
terizing all subconcepts Ci which are represented in the training set; thereafter, it
spends an equal amount of time on each subconcept, resulting in consistent cover-
age improvements for all subconcepts, whatever their initial coverage is.

60 N. Baskiotis and M. Sebag

5 Discussion

Few applications of Machine Learning techniques to Software Testing have been
proposed in the literature. ML has been used to feed Software Testing with
program invariants [15] or characterizing relevant paths in a model checking
framework [16]; it has also been used to post-process and generalize the software
testing results [2].

A more remotely related work presented by [5] actually focuses on Software
Debugging. Indeed, quite a few authors have investigated the generation of test
cases for Software Debugging [17,18,19], most often using Constraint Satisfaction
techniques.

The difference between Software Debugging and Software Testing can be char-
acterized in terms of goal as well as quality criterion. For instance when analyzing
malware, i.e. malicious software [17], the goal is to detect and prevent fatal er-
rors. In order to do so, one must be able to run every instruction and visit every
branch in the program (e.g. finding the test cases triggering malicious instruc-
tions). In other words, Software Debugging is interested in test cases enforcing a
complete coverage of the block instructions, necessary and sufficient to warrant
that the program is not prone to fatal errors.

In Software Testing, the goal is to certify that the software will behave accord-
ing to its specifications (not every misbehavior causes a fatal error). Therefore,
Software Testing aims at a complete coverage of the paths.

Indeed, when the program being tested does not involve loops, there is no
difference between the path coverage and the block coverage criteria; in such
cases, constraint based approaches are more efficient than ours. Otherwise, obvi-
ously the number of paths is infinite (or exponentially larger than the number of
block instructions if bounded length paths are considered), and complete path
coverage is not tractable. A relaxation of the complete path coverage, the goal
of Software Testing thus is to uniformly sample the feasible paths.

Clearly, the distribution of the feasible paths generated by MLST is far from
being uniform. Further work is concerned with characterizing the distribution of
the generated paths, and studying its convergence.

6 Conclusion and Perspectives

The presented application of Machine Learning to Software Testing relies on an
efficient representation of paths in a graph, coping with long-range dependencies
and data sparsity. Further research aims at a formal characterization of the
potentialities and limitations of this extended Parikh representation (see also
[20]), in software testing and in other structured domains.

The main contribution of the presented work is to enable the efficient sam-
pling of paths in a graph, targeted at some specific path region. The extension
to structured domains of Active Learning, a hot topic in the Machine Learning
field for over a decade [21], specifically targeted at the construction of struc-
tured examples satisfying a given property, indeed opens new theoretical and
applicative perspectives to Relational Machine Learning.

Structural Statistical Software Testing with Active Learning in a Graph 61

With respect to Statistical Software Testing, the presented approach dramat-
ically improves on former approaches, based on the EXIST algorithm [3] and on
uniform sampling [6]. Further research is concerned with sampling conjunctive
subconcepts which are not represented in the initial training set. In the longer
run, the extension of this approach to related applications such as equivalence
testers or reachability testers for huge automata [22] will be studied.

Acknowledgements

We thank the anonymous reviewers for many helpful comments. The authors
gratefully acknowledge the support of Pascal Network of Excellence IS T-2002-
506 778.

References

1. Rish, I., Das, R., Tesauro, G., Kephart, J.: ECML-PKDD Workshop Autonomic
Computing: A new Challenge for Machine Learning (2006)

2. Bréhélin, L., Gascuel, O., Caraux, G.: Hidden Markov models with patterns to learn
boolean vector sequences and application to the built-in self-test for integrated
circuits. IEEE Transactions Pattern Analysis and Machine Intelligence 23(9), 997–
1008 (2001)

3. Baskiotis, N., Sebag, M., Gaudel, M.C., Gouraud, S.D.: Software testing: A ma-
chine learning approach. In: Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pp. 2274–2279 (2007)

4. Xiao, G., Southey, F., Holte, R.C., Wilkinson, D.F.: Software testing by active
learning for commercial games. In: Proceedings of the 20th National Conference
on Artificial Intelligence (AAAI), pp. 898–903 (2005)

5. Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging:
simultaneous identification of multiple bugs. In: Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pp. 1105–1112 (2006)

6. Denise, A., Gaudel, M.C., Gouraud, S.D.: A generic method for statistical test-
ing. In: Proceedings of the 15th International Symposium on Software Reliability
Engineering, pp. 25–34 (2004)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Dasgupta, S.: Coarse sample complexity bounds for active learning. Advances in
Neural Information Processing Systems, 235–242 (2005)

9. Mitchell, T.: Generalization as search. Artificial Intelligence 18, 203–226 (1982)
10. Gouraud, S.D.: Statistical Software Testing based on Structural Combinatorics. In:

PhD thesis, LRI, UniversitéParis-Sud (2004)
11. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation

of labelled combinatorial structures. Theoretical Computer Science 132(2), 1–35
(1994)

12. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using variable order Markov
models. Journal of Artificial Intelligence Research 22, 385–421 (2004)

13. Fischer, E., Magniez, F., de Rougemont, M.: Approximate satisfiability and equiv-
alence. In: 21th IEEE Symposium on Logic in Computer Science, pp. 421–430
(2006)

62 N. Baskiotis and M. Sebag

14. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

15. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2), 99–123 (2001)

16. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Actively learning to verify
safety for FIFO automata. In: Foundations of Software Technology and Theoretical
Computer Science, pp. 494–505 (2004)

17. Moser, A., Krügel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: IEEE Symposium on Security and Privacy, pp. 231–245 (2007)

18. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: ACM Conference on Computer and Commu-
nications Security, pp. 322–335 (2006)

19. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pp. 213–223 (2005)

20. Clark, A., Florencio, C.C., Watkins, C.: Languages as hyperplanes: Grammatical
inference with string kernels. In: Proceedings of the 17th European Conference on
Machine Learning, pp. 90–101 (2006)

21. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
In: Advances in Neural Information Processing Systems, pp. 705–712. MIT Press,
Cambridge (1995)

22. Yannakakis, M.: Testing, optimization, and games. In: Proceedings of the 31st
International Colloquium on Automata, Languages and Programming, pp. 28–45
(2004)

Learning Declarative Bias

Will Bridewell1 and Ljupčo Todorovski1,2

1 Computational Learning Laboratory,
Center for the Study of Language and Information,

Stanford University, Stanford, CA, USA 94305
willb@csli.stanford.edu

2 University of Ljubljana, Faculty of Administration
Gosarjeva 5, SI-1000 Ljubljana, Slovenia

ljupco.todorovski@fu.uni-lj.si

Abstract. In this paper, we introduce an inductive logic programming
approach to learning declarative bias. The target learning task is in-
ductive process modeling, which we briefly review. Next we discuss our
approach to bias induction while emphasizing predicates that character-
ize the knowledge and models associated with the HIPM system. We
then evaluate how the learned bias affects the space of model structures
that HIPM considers and how well it generalizes to other search prob-
lems in the same domain. Results indicate that the bias reduces the
size of the search space without removing the most accurate structures.
In addition, our approach reconstructs known constraints in population
dynamics. We conclude the paper by discussing a generalization of the
technique to learning bias for inductive logic programming and by noting
directions for future work.

Keywords: inductive process modeling, meta-learning, transfer learning.

1 Introduction

Research on inductive process modeling [1] emphasizes programs that build mod-
els of dynamic systems. As the name suggests, the models are sets of processes
that relate groups of entities. For example, neighboring wolf and rabbit popula-
tions interact through a predation process, which may take one of many forms.
As input, these programs take observations, which record system behavior over
time, background knowledge, which consists of scientifically meaningful generic
processes, and entities whose behavior should be explained. The output is a
model that comprises processes instantiated with the available entities. A naive
solution to the task would exhaustively search the space of models defined by
the instantiated processes, but this approach produces several nonsensical mod-
els and the search space grows exponentially in the number of instantiations. To
make inductive process modeling manageable in nontrivial domains, one must
introduce bias.

Recently, researchers developed the notion of a process hierarchy to define
the space of plausible model structures [2]. This solution defines which processes

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 63–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 W. Bridewell and L. Todorovski

must always appear in a model, which ones depend on the presence of others,
and which ones mutually exclude each other. Although one can use the hierarchy
to substantially reduce the size of the search space, specifying relationships that
both constrain the space and have validity in the modeled domain is difficult.
Importantly, the introduction of this bias replaces the task of manually building
a model with that of manually defining the space of plausible model structures.
Ideally we would like to automatically discover this knowledge.

Ample literature exists on bias selection [3], which emphasizes search through
the space of learning parameters, and constructive induction [4], which increases
the size of the search space. In contrast, we wish to learn constraints that will
reshape the search space and ensure that the program considers only plausible
and accurate models. In the context of inductive process modeling, the learned
constraints would imply the same restrictions as those encoded in the process
hierarchy. For instance, in the case of the wolves and rabbits, we would like
to discover that an accurate model of the dynamics must include a predation
process. As this example hints, these constraints are generalizations drawn from
the space of models.

To be more specific, we used inductive logic programming to find clauses that
characterize accurate and inaccurate models. The examples are individual mod-
els from the search space that are classified as accurate or inaccurate according to
their fit to training data. As further input, the background knowledge comprises
descriptions of model organization such as predicates that indicate whether a
model includes a particular process and which entities participate in a process.
Given this information, we learn theories whose clauses describe accurate and
inaccurate models, which we then turn into constraints on the model structures.

Before describing our approach in detail, we first provide a high level intro-
duction of inductive process modeling with an emphasis on those aspects used
to learn declarative bias. We then describe our learning algorithm, which relies
on the combination of HIPM [2] and Aleph [5]. Next we describe promising re-
sults on a predator–prey domain and highlight the transfer of learned bias across
multiple data sets. Following the experiments, we explain the general applicabil-
ity of this approach to other artificial intelligence tasks and identify other work
of a similar nature. Finally, we discuss limitations of our current approach and
highlight its effect on inductive process modeling.

2 Inductive Process Modeling

Our program learns bias by analyzing the model structures that HIPM generates
during search. For this reason, we provide a rough description of the knowledge
representations for generic process libraries and quantitative process models.
In the context of this paper, details about the internals of the processes (e.g.,
conditions and equations), the structural and parametric search techniques, and
the simulation routine are of less importance. We will briefly mention these
aspects, which are described in greater detail elsewhere [1,2].

Learning Declarative Bias 65

Table 1. Part of a library for population dynamics, which includes both generic entities
and processes. A generic process’s type appears in braces after its name. For simplicity,
we suppress each process’s equations, conditions, and numeric parameters.

generic entity predator: generic entity prey:
variables concentration{sum}; variables concentration{sum};
generic process exp growth{growth}: generic process log growth{growth}:
entity E{prey, predator}; entity E{prey, predator};
generic process exp loss{loss}: generic process holling type 1{predation}:
entity E{prey, predator}; entity P{prey}, R{predator};
generic process holling type 2{predation}: generic process holling type 3{predation}:
entity P{prey}, R{predator}; entity P{prey}, R{predator};

At a high level, the background knowledge used by HIPM takes the form of the
process library shown in Table 1. This library defines two generic entities which
have properties (i.e., variables and constants). In this case, both declarations
specify a single variable, concentration, with an additive combining scheme.1

The generic entities fill labeled roles in the generic processes, which are defined
below each process’s name. For instance, exp growth requires an instantiation of
the generic entity prey or predator and in its complete form contains a constant
that defines the growth rate and an equation that alters the prey’s concentra-
tion. Notice that this generic process also has type growth, which is specified in
braces after the name. In HIPM, process types define groups of generic processes
that help delimit the search space. For instance, one could require that all pop-
ulation dynamics models include one of the many predation processes, letting
the program select from these based on the model’s fit to data.

In contrast to libraries, models contain instantiated entities and processes. For
the entities, one must define the properties by specifying the values of constants
and by either associating variables with a trajectory or stating their initial values.
As an example, the entity Wolf could instantiate predator and its variable could
refer to weekly recordings of a localized wolf population’s size. Instantiating a
process involves specifying the values of local constants and filling each labeled
role with an entity that has the appropriate type. To a degree, and for the
purposes of this paper, one can view generic processes and entities as predicates
and the instantiated versions as ground facts.

Expanding on this logical view, a model is a conjunctive clause that can predict
the quantitative behavior of a dynamic system. To explain a data set, HIPM con-
structs model structures that satisfy constraints, which are part of the bias. The
program then estimates the numeric parameters of each model using a gradient

1 When multiple processes influence a variable, one must aggregate the effects. To this
end, HIPM supports combining schemes that select the minimal or maximal effect,
add the effects, or multiply them.

66 W. Bridewell and L. Todorovski

Table 2. The logical representation of the population dynamics library from Table 1

entity(predator). entity(prey).

process(exp growth, growth). process(log growth, growth).
process(exp loss, loss). process(holling type 1, predation).
process(holling type 2, predation). process(holling type 3, predation).

search algorithm [6] coupled with random restarts. HIPM relies on CVODE [7] to
simulate the system of equations entailed by the model and compares the trajec-
tories to measured time-series. To learn bias, our program employs a more general
logical view of the model and couples it with a predicate that associates the struc-
ture with a particular level of accuracy.

3 Learning Bias by Inductive Logic Programming

The primary contribution of this paper is a logical representation that lets one
learn declarative bias by analyzing the space of possible models. We developed
such a formalism for describing both libraries and models associated with in-
ductive process modeling and we present a strategy for applying inductive logic
programming tools. In this section, we describe the formalism, the input to the
learning system, the performance element that uses the learned rules, and the
learning software that we employed.

Model structures contain a number of processes, each of which relates a num-
ber of entities, and each of those may be shared among multiple processes. These
three properties indicate the inherent relational structure of the models and
suggest that a first-order representation would best capture this characteristic.
Indeed, in Section 2 we suggested that the inductive process modeling represen-
tation resembles first-order logic. That is, one could view the names of generic
processes and entities as predicates and instantiations of these as ground facts.
However, this mapping creates a domain-specific language that one must tailor
to other modeling problems. For instance, we would like to use the same predi-
cates for describing knowledge and models from the population dynamics domain
as for those in a physiological one. Therefore, we designed domain-independent
predicates that explicitly characterize the structure of processes and models.

Table 2 contains an encoding of the population dynamics library from Ta-
ble 1. There are only two predicates in this representation: entity and process.
For our program, the only relevant information about a generic entity is its
name. Generic processes differ slightly in that they have both a name, the first
argument, and a type, the second one. Currently we leave the entity roles of
a generic process unspecified because the instantiated processes in each model
relate entities according to the type specification in the library. A key feature of
this formalization is that it limits the domain-specific information to the process
library and lets us build high-level predicates that generalize to other tasks.

Learning Declarative Bias 67

Table 3. The logical representation of a population dynamics model

model(m1). r2(m1, 0.85).

process instance(m1, p1, exp growth). process instance(m1, p2, exp loss).
parameter(m1, p1, aurelia). parameter(m1, p2, nasutum).

process instance(m1, p3, holling type 1).
parameter(m1, p3, aurelia). entity instance(nasutum, predator).
parameter(m1, p3, nasutum). entity instance(aurelia, prey).

The logical representation for process models resembles that for the library
with the key differences that it ties the components of individual models together
and that it includes information about the process parameters. To illustrate,
consider the model in Table 3. Since the examples are a collection of ground facts,
we need a way to associate processes, parameters, and entities with particular
models. Here, we introduce the predicate model that declares a ground term to
be a model identifier. This term appears in all predicates associated with that
particular model except for entity instance. Since all models explain the behavior
of the same entities, a direct tie between them is unnecessary.

Similarly, we associate parameters with particular processes. For instance, the
model in Table 3 contains a process instance that belongs to model m1, has the
unique identifier p1, and instantiates the generic process exp growth. The use of
the unique identifier lets one relate multiple entities to a single process.

The collection of ground facts from Table 3 defines an organized model struc-
ture that has a particular accuracy. Here we encode this value with the r2 pred-
icate, which records the coefficient of determination calculated over the training
data. This value falls in the range [0, 1] and indicates how well the shape of the
simulated trajectory matches that of the observed values.

Although the predicates for the generic process library and for instantiated
models define the structures, they would lead to clauses that are difficult to
interpret. To address this problem, we introduce a set of higher level predi-
cates that describe the structures in terms of properties. These predicates com-
bine those from Tables 2 and 3 into forms like those in Table 4. To illus-
trate, the predicate includes processtype entity(m1, p1, aurelia) com-
pactly represents the conjunction process instance(m1, p1, exp growth),
process(exp growth, growth), parameter(m1, p1, aurelia), entity
instance(aurelia, prey). We use these higher-level predicates in addition to
the lower-level ones so that one can identify comprehensible rules without losing
the ability to learn unanticipated relationships among model structures.

Whereas the library definition and high level predicates compose the back-
ground knowledge, the models serve as the examples. To assign the models to
a target class, we use the predicates accurate model and inaccurate model. We

68 W. Bridewell and L. Todorovski

Table 4. Examples of high-level predicates that describe the model structure

includes processtype(M, T) :– includes processtype entity(M, T, E) :–
model(M), process(P, T), model(M), entity(E),
process instance(M, , P). process instance(M, PI, P), process(P, T),

parameter(M, PI, EI), entity instance(EI, E).

define the rules for these predicates as accurate model(M) :- r2(M, R), R ≥
threshold. and inaccurate model(M) :- r2(M, R), R < threshold.2 We
describe the method for selecting a threshold in Section 4.

Given background knowledge and examples, our approach produces theories
whose clauses characterize the structure of accurate and inaccurate models. We
can use each such clause to bias the search space of candidate model struc-
tures. To this end, the clauses that predict accurate models specify which struc-
tures should remain in the search space, while the clauses for inaccurate models
state ones the automated modeler should prune. To learn these rules, we ap-
ply the inductive logic programming system Aleph, which produces separate
theories for accurate and inaccurate models. For example, Aleph could learn
the clause, accurate model(M) :- includes processtype(M, predation).,
which we would turn into background knowledge for HIPM that forces all models
to contain a process with type predation.

As we have described the task, learning declarative bias seems like a natural
problem for inductive logic programming; however, a propositional approach
would work as well since we are working in a finite domain without recursive
predicates. For instance, given a fixed, finite domain of processes, we could con-
struct a Boolean feature vector for each model that contains all the properties
captured by the background knowledge. This method would effectively involve
a reimplementation of the LINUS system [8], which, as a result, reinforces the
appropriateness of a relational learner for inducing declarative bias. In the next
section, we evaluate our described approach in an ecological domain.

4 Empirical Evaluation

To determine the utility of the approach described in Section 3, we applied it in
the domain of population dynamics. After describing the experimental method,
we detail a strategy for selecting an appropriate threshold value to separate ac-
curate models from inaccurate ones. In the rest of the section, we evaluate three
conjectures about the learned bias. First, we expect the bias will substantially
reduce the search space of candidate model structures. Second, we expect the
reduced search space will retain the most accurate models. And third, we an-
ticipate that the learned model constraints will be consistent with the existing

2 Note that r2 is not a background knowledge predicate for learning bias.

Learning Declarative Bias 69

knowledge in the domain of population dynamics modeling and have a potential
to contribute new findings to it.

4.1 Method

We performed the experiments on three modeling tasks. Each includes modeling
population dynamics from measured time-series of concentrations of two species,
aurelia and nasutum [9], involved in a predator–prey interaction. We ran HIPM
on the three tasks with an initial library that lack constraints on process com-
binations in models. HIPM performed exhaustive search through the space of
9402 model structures that have up to five processes, fit the constant parameters
of each candidate structure against the measured time-series, and reported the
obtained model and its performance (i.e., the coefficient of determination on the
training time-series). We reformulated the traces of HIPM runs in first-order
logic to create three data sets for learning bias: PP1, PP2, and PP3.

For each data set, we must first select the value of the performance threshold
that distinguishes accurate models from the inaccurate ones first. We evaluate
the effect of the threshold value on the recall of the best models in the next
subsection, and based on this analysis, we propose a method for selecting an
optimal threshold for a given data set. Having selected the threshold value for
the training set, we run Aleph to induce bias, and then evaluate its performance
on the remaining two data sets which were unseen during learning.3 We use
Aleph’s default parameter settings, except that we set its noise parameter to 10,
which lets a clause cover up to 10 negative examples, the minpos parameter to
2, which prevents Aleph from adding ground facts to the theory, and the nodes
parameter to 100,000, which increases the upper bound on the program’s search
space complexity.

To validate our conjectures about the induced bias, we use two quantitative
evaluation metrics and qualitative analysis. First, we measure the size of the
search space before and after applying the learned bias. Formally, we calculate
the reduction factor as |SS0|/|SS|, where |SS0| denotes the number of models in
the unconstrained search space and |SS| is the number of model structures in
the biased space. Second, best model recall measures the percentage of the n best
models of a particular data set in the entire search space that also appear in the
reduced space. Ideally, the reduced space would retain 100% of the best models.
In the experiments, we measure recall of the ten and fifty best models. Next, we
compare the distribution of the model performance in the reduced search space
to the distribution of the model performance in the entire space. We expect the
overall performance of models in the reduced search space to compare favorably
to the overall performance of all candidate models. Finally, we present the model
constraints that were learned from all three data sets and analyze them in terms
of their consistency with existing knowledge in the population dynamics domain.

3 Since HIPM performs exhaustive search, we do not run HIPM again to search the
constrained space of models. Instead, we remove the model structures that violate
the induced constraints.

70 W. Bridewell and L. Todorovski

 0

 5

 10

 15

 20

 25

 30

 35

0.0110.0240.0790.1300.4080.6510.860

re
du

ct
io

n
fa

ct
or

performance threshold value

accurate
inaccurate

 0

 20

 40

 60

 80

 100

0.0110.0240.0790.1300.4080.6510.860

re
ca

ll
ra

te
 (

R
R

-5
0)

 [%
]

performance threshold value

accurate
inaccurate

(a) (b)

Fig. 1. Sensitivity analysis of the bias to the performance threshold value as calculated
on training data. The graph on the left-hand side (a) shows the reduction of the search
space, while the one on the right-hand side (b) shows the recall of the best fifty models.
Full and empty circle symbols indicate the performance of the model constraints for
the accurate and inaccurate class, respectively.

4.2 Selecting a Performance Threshold

Before we select an appropriate performance threshold for classifying a model
as accurate or inaccurate, we analyze its effect on bias performance in terms
of search space reduction and best models recall. To identify a list of plausible
threshold values, we rank the models according to their accuracy and divide
them into 10 bins. Then we select the point of maximal performance change
between two consecutive models in each bin. This leads to an initial list of ten
candidate thresholds, which we revise by removing consecutive points that are
close to each other.

The graph in Figure 1(a) shows that the relation between the performance
threshold and the search space reduction is strictly monotonic. As one would
expect, high threshold values render most of the models inaccurate, which leads
to highly specific model constraints. Using these specific model constraints con-
siderably narrows the search space, which is reflected in the high values of the
reduction factor (over 30). On the other hand, the graph in Figure 1(b) shows
that the bias corresponding to high threshold values is too restrictive and re-
moves most of the best models from the search space. Model constraints induced
with threshold values of 0.860 and 0.651 filter out most of the fifty best models,
while the others include most of the best models. The model constraints for the
class of inaccurate models follow roughly the same pattern.

Note that the analysis performed here is limited to the training data set, to
emphasize the fact that we select the performance threshold on the basis of
training data only. The bias performance change on the test data sets correlates
highly with the results on the training data and is virtually identical to that
shown in Figure 1(b). This indicates the good generalization performance of the
induced bias, which we further analyze in the next subsection.

Learning Declarative Bias 71

Table 5. Evaluating the utility of the model constraints learned on a train data set
TrainDS (for accurate and inaccurate target predicates) on test data sets TestDS. For
each bias, the table reports the reduction of the search space (RSS) and the recall of
the top ten (BMR-10) and top fifty (BMR-50) models for the test set.

Model Constraints (Bias) Bias Evaluation
TrainDS Class RSS TestDS BMR-10[%] BMR-50[%]

PP1 accurate 11× PP2 100 96
PP3 100 94

PP1 inaccurate 11× PP2 90 88
PP3 90 92

PP2 accurate 16× PP1 100 98
PP3 60 36

PP2 inaccurate 11× PP1 100 98
PP3 90 82

PP3 accurate 10× PP1 100 100
PP2 100 100

PP3 inaccurate 9× PP1 100 100
PP2 100 98

In summary, the graphs in Figure 1 clearly render 0.130 and 0.408 as optimal
threshold values, since they both lead to a substantially reduced search spaces
that retain most of the best models. Based on this analysis, we use 0.408 as
threshold for performing further experiments on the PP1 data set. The analysis
of threshold influence on the bias performance on the other two data sets, PP2
and PP3, shows a similar effect.

4.3 Evaluating the Generalization Performance

Once we identify the optimal threshold value for learning bias on a particular
data set, we induce the bias using that threshold, and we analyze its performance
on the other two data sets. Table 5 summarizes the results of the evaluation.
All model constraints, induced on different data sets and for different target
predicates, lead to a reduction factor ranging from 9 to 16. The highest reduction
rate is observed for the bias induced on the PP2 data set for the inaccurate class.

All induced model constraints recall most of the top ten models for all test
data sets, except the ones induced on the PP2 data (inaccurate class) that recall
6 of the top ten models for PP3. The recall of the top fifty models is lower, but
still over 90% for most of the cases, with the exception for the bias induced from
the PP2 data set (82% and 63% recall of the top fifty models for PP3 using inac-
curate and accurate constraints, respectively). The worse overall performance is
observed when applying the bias induced from the accurate models in PP2 data
set, which is the most restrictive bias in terms of the search space reduction.

72 W. Bridewell and L. Todorovski

0.0

0.2

0.4

0.6

0.8

1.0

initial accurate inaccurate

r2

(a)

initial accurate inaccurate

(b)

initial accurate inaccurate

(c)

Fig. 2. Comparing the distributions of the model performance in the initial (uncon-
strained) search space to the performance distributions in the biased spaces induced
from the PP1 data set (accurate and inaccurate class). Graphs (a), (b), and (c) compare
the distributions on the PP1, PP2, and PP3 data sets respectively.

The graphs in Figure 2 compare the performance distribution for the models
in the initial (unconstrained) search space to the performance distribution in the
search spaces constrained by the bias induced from the PP1 data set. Figure 2(a)
shows that the median r2 in the entire search space is close to 0 denoting that
most of the models perform poorly on the training time-series (recall that the
range of r2 is [0,1]). The learned bias focuses the search to the space of candidate
model structures that perform much better, their median value being 0.89. Note
however, that the bias does not filter out all inaccurate models from the search
space, since the minimal observed performance remains close to 0. The graphs
in Figures 2(b) and 2(c) show that the constraints induced on the PP1 data
set also narrows the search focus on the test data sets, PP2 and PP3. Bias still
shifts the distribution towards models with better performance: from median r2

close to 0 to medians of 0.63 and 0.26, for PP2 and PP3 respectively. However,
the performance distribution for PP2 is blurred towards worse performing mod-
els indicating that the bias induced on the PP1 data set allows a considerable
number of sub-optimal models. Nevertheless, the comparison of the distributions
confirm that the bias learned on PP1 generalizes well to PP2 and PP3. The effect
of the constraints induced from PP2 and PP3 are comparable.

4.4 Semantic Analysis of the Induced Constraints

For each data set Aleph induced a different collection of model constraints.
Yet, eight of these, presented in Table 6, appear in every theory. Since these
constraints provide generalizations that we can match against existing domain
knowledge, we analyze their potential to enrich it.

Before describing the clauses produced by Aleph, we acknowledge their propo-
sitional nature and stress its superficiality. To illustrate, we point out that the

Learning Declarative Bias 73

Table 6. The eight rules that appear in each of the theories induced from the PP1,
PP2, and PP3 data sets

accurate model(M) :-
includes processtype entity(M, loss, predator),
includes process entity(M, exp growth, prey),
includes process(M, hassell varley 2).

accurate model(M) :-
includes processtype entity(M, loss, predator),
includes process entity(M, exp growth, prey),
includes process(M, holling type 3).

accurate model(M) :-
includes processtype entity(M, loss, predator),
includes process entity(M, log growth, prey),
includes process(M, hassell varley 2).

accurate model(M) :-
includes processtype entity(M, loss, predator),
includes process entity(M, log growth, prey),
includes process(M, holling type 2).

accurate model(M) :-
includes processtype entity(M, loss, predator),
includes process entity(M, log growth, prey),
includes process(M, holling type 3).

inaccurate model(M) :-
doesnotinclude processtype entity(M, growth, prey).

inaccurate model(M) :-
doesnotinclude processtype entity(M, loss, predator).

inaccurate model(M) :-
doesnotinclude processtype(M, interaction).

higher-level predicates mask the relational structure of the rules. For example,
one can rewrite the first rule in Table 6 in terms of the lower-level predicates as
accurate model(M) :-
model(M), entity(predator), process instance(M, PI, P),
process(P, loss), parameter(M, PI, EI),
entity instance(EI, predator), process(exp growth), entity(prey),
process instance(M, PI2, exp growth), parameter(M, PI2, EI2),
entity instance(EI2, prey), process(hassell varley 2),
process instance(M, PI3, hassell varley 2).

In addition, had we relaxed the limitations on which entity types could bind to
particular processes (e.g., by letting entities having type predator bind to growth
processes and those having type prey bind to loss processes), rules such as

74 W. Bridewell and L. Todorovski

inaccurate model(M) :- includes processtype entity(M, growth, ET),
includes processtype entity(M, loss, ET).

would likely appear.
Turning now to the semantic analysis of the rules, we see that five of the

frequent clauses shown in Table 6 characterize accurate models. The first two
specify that the structure of an accurate predator–prey model includes three
processes: loss of the predator, exponential growth of the prey, and one interac-
tion process, which may be one of the two specific formulations. The three other
clauses that characterize accurate models are similar, since they also claim that
an accurate models include three processes of loss, growth, and interaction. The
difference from the first two rules is that they specify alternative form of the
growth process (logistic instead of exponential) and a larger set of interactions.

Finally, the three model constraints for the inaccurate model predicate para-
phrase the rules for the class of accurate models, but they are more general.
They identify the three main properties of an inaccurate model’s structure: the
lack of prey species growth, the lack of predator loss, and the lack of interaction
between species. In other words, an accurate model structure should include at
least one process of each type, which is a rediscovery of the well known fact
established in early work by Lotka and Volterra [10]. On the other hand, the five
rules for the accurate models establish novel hypotheses about predator–prey
interaction between the observed species, which ecologists may further evaluate.

We consider the reconstruction of well-known facts from the domain of pop-
ulation dynamics as important evidence about our program’s potential to learn
useful and meaningful bias constraints. This result also improves the credibility
of the hypotheses established by the other model constraints.

5 General Discussion

Although initial results suggest the feasibility of our approach to inducing bias,
many questions remain. In this section, we describe related work and explore
the generality and limitations of our method.

In the introduction, we differentiated our work from bias selection and con-
structive induction, but there are other similar approaches that we should dis-
cuss. In particular, our research falls within the general category of metalearning
[11], but much of this work emphasizes the prediction of algorithm performance,
whereas we use the output of learning to reshape the search space for an algo-
rithm’s future applications. Instead, our work more closely matches that of Mc-
Creath and Sharma [12] who used inductive logic programming to learn mode
and type declarations, which could constrain the space of candidate clauses. No-
tably, their program produced syntactic constraints unrelated to the specific do-
main, whereas our approach induces semantic ones that are interpretable within
the domain’s context. Additionally, we note similarities with learning control

Learning Declarative Bias 75

rules for planning [13] since the algorithms analyze the output of the planner
to improve future performance. However, such systems generally view only the
operators and the context of their application as opposed to an entire plan.

The predicates with which we characterize model structures resemble the re-
lational clichés introduced by Silverstein and Pazzani [14]. Relational clichés are
conjunctions of predicates that are useful for building classification rules in a
particular domain. As such they relate to a combination of processes that must
appear in an accurate model. While our approach learns these combinations (i.e.,
clichés) from examples of inaccurate and accurate models, the work presented
in [14] does not deal with learning clichés but rather demonstrates the benefit
of using them as declarative bias for learning classification rules. More recently,
Morin and Matwin [15] proposed an approach to inducing relational clichés, but
instead of using the meta-learning approach presented here, they learn clichés
directly from the examples in one domain and then transfer them into another
domain. Their work focuses on learning and transfer of bias between domains
and not on learning constraint rules that would contribute to the theory in the
domain of interest. On the other hand, transferring induced knowledge to other
domains is an open challenge for our approach.

Even though we showed how to learn bias in the limited context of induc-
tive process modeling, we expect that it will generalize to other domains. For
instance, in the case of inductive logic programming, one would examine each
evaluated clause as a separate entity and identify a bias that restricts the struc-
ture of the antecedents. This usage would require the learning program to report
the performance of all considered clauses instead of just those in the final theory,
but such an extension requires minimal effort with the potential for substantial
gains in both the effectiveness of the search and the plausibility of the induced
theories. Extensions to propositional and association rule learning are similar.

Apart from generalization to other artificial intelligence tasks, there are several
open avenues for future work. First, in this paper, we assume that exhaustive
search of the model space is possible. Such scenarios are uncommon, and we
need to better understand the effects of model sampling on the induction of bias.
Second, we would like to use a similar approach to analyze the best performing
models in a domain. This task requires an inductive logic programming system
that learns from positive examples only [16] and raises questions about what to
include in the set of best models. Third, Reid [17] introduces the idea of learning
an evaluation bias, which lets one infer the reliability of a logical rule from its
past performance in related tasks. In the spirit of his research, we would like to
estimate the quantitative fit of a model structure based upon its performance
in similar domains. This step would let a program establish priorities over a set
of candidate structures so that “better” ones would have earlier access to the
computationally expensive parameter-estimation routine. Finally, Pazzani and
Kibler [18] show that biasing the space of candidate models with domain-specific
knowledge helps reduce overfitting and improves overall accuracy on a test set.
We need to evaluate whether this holds true when the bias is automatically
induced.

76 W. Bridewell and L. Todorovski

6 Conclusion

In this paper, we developed a representation that lets one learn declarative bias
for inductive process modeling using tool provided for inductive logic program-
ming. Our primary contribution is that we showed how to construct the back-
ground knowledge, how to describe the examples, and how to select a threshold
for the supervised learning task. We then evaluated our approach on a popu-
lation dynamics domain and found that the learned bias substantially reduced
the size of the candidate model structure space. We also found that the bias
increased the proportion of accurate models in both the training data and test
data taken from the same domain. Importantly many of the induced constraints
verified known ecological theory. Finally, we described related work, proposed
the generalization of this method to other learning algorithms, and highlighted
future work that will lead to a better understanding of this research area. We
believe that the reported approach opens a promising new avenue for scientists
in artificial intelligence that is rich with open questions.

Acknowledgments. This research was supported by Grant No. IIS-0326059
from the National Science Foundation. We thank Pat Langley, Stuart Borrett,
and Tolga Könik for discussions that influenced the ideas in this paper.

References

1. Langley, P., Sánchez, J., Todorovski, L., Džeroski, S.: Inducing process models from
continuous data. In: Proceedings of the Nineteenth International Conference on
Machine Learning, Sydney, pp. 347–354. Morgan Kaufmann, San Francisco (2002)

2. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process
models in dynamic domains. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence, Pittsburgh, PA, pp. 892–897. AAAI Press, Menlo Park
(2005)

3. Provost, F., Buchanan, B.: Inductive policy: The pragmatics of bias selection. Ma-
chine Learning 20, 35–61 (1995)

4. Utgoff, P.E.: Machine Learning of Inductive Bias. Kluwer Academic Publishers,
Boston, MA (1986)

5. Srinivasan, A.: The Aleph Manual. Computing Laboratory, Oxford Univer-
sity Press, Oxford (2000), http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aleph toc.html

6. Bunch, D.S., Gay, D.M., Welsch, R.E.: Algorithm 717: Subroutines for maximum
likelihood and quasi-likelihood estimation of parameters in nonlinear regression
models. ACM Transactions on Mathematical Software 19, 109–130 (1993)

7. Cohen, S., Hindmarsh, A.: CVODE, a stiff/nonstiff ODE solver in C. Computers
in Physics 10, 138–143 (1996)

8. Lavrac, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York (1994)

9. Jost, C., Ellner, S.: Testing for predator dependence in predator–prey dynamics:
A non-parametric approach. In: Proceedings of the Royal Society of London B,
vol. 267(1453), pp. 1611–1620 (2000)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html

Learning Declarative Bias 77

10. Kingsland, S.E.: Modeling Nature, 2nd edn. The University of Chicago Press,
Chicago, IL (1995)

11. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on
meta-learning. Machine Learning 54, 187–193 (2004)

12. McCreath, E., Sharma, A.: Extraction of meta-knowledge to restrict the hypothesis
space for ILP systems. In: Proceedings of the Eighth Australian Joint Conference on
Artificial Intelligence, Canberra, Australia, pp. 75–82. World Scientific Publishers,
Singapore (1995)

13. Huang, Y., Selman, B., Kautz, H.A.: Learning declarative control rules for
constraint-based planning. In: Proceedings of the Seventeenth International Con-
ference on Machine Learning, Stanford, CA, pp. 415–422. Morgan Kaufmann, San
Francisco (2000)

14. Silverstein, G., Pazzani, M.J.: Relational clichés: Constraining constructive induc-
tion during relational learning. In: Proceedings of the Eighth International Work-
shop on Machine Learning, pp. 203–207. Morgan Kaufmann, San Francisco (1991)

15. Morin, J., Matwin, S.: Relational learning with transfer of knowledge between do-
mains. In: Proceedings of the Thirteenth Biennial Conference of the Canadian So-
ciety for Computational Studies of Intelligence, pp. 379–388. Springer, Heidelberg
(2000)

16. Muggleton, S.: Learning from positive data. In: Proceedings of the Sixth Interna-
tional Workshop on Inductive Logic Programming, Stockholm, Sweden, pp. 358–
376. Springer, Heidelberg (1996)

17. Reid, M.: DEFT guessing: Using inductive transfer to improve rule evaluation
from limited data. Ph.D. thesis, University of New South Wales, Sydney, Australia
(2007)

18. Pazzani, M.J., Kibler, D.F.: The utility of knowledge in inductive learning. Machine
Learning 9, 57–94 (1992)

ILP :- Just Trie It

Rui Camacho1, Nuno A. Fonseca2, Ricardo Rocha3, and Vı́tor Santos Costa3

1 Faculdade de Engenharia & LIAAD, Universidade do Porto, Portugal
rcamacho@fe.up.pt

2 Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
nf@ibmc.up.pt

3 DCC-FC, Universidade do Porto, Portugal
{ricroc,vsc}@ncc.up.pt

Abstract. Despite the considerable success of Inductive Logic Program-
ming (ILP), deployed ILP systems still have efficiency problems when
applied to complex problems. Several techniques have been proposed
to address the efficiency issue. Such proposals include query transforma-
tions, query packs, lazy evaluation and parallel execution of ILP systems,
to mention just a few. We propose a novel technique that avoids the pro-
cedure of deducing each example to evaluate each constructed clause.
The technique takes advantage of the two stage procedure of Mode Di-
rected Inverse Entailment (MDIE) systems. In the first stage of a MDIE
system, where the bottom clause is constructed, we store not only the
bottom clause but also valuable additional information. The information
stored is sufficient to evaluate the clauses constructed in the second stage
without the need for a theorem prover. We used a data structure called
Trie to efficiently store all bottom clauses produced using all examples
(positive and negative) as seeds. The technique was implemented and
evaluated using two well known data sets from the ILP literature. The
results are promising both in terms of execution time and accuracy.

Keywords: Mode Directed Inverse Entailment, Efficiency, Data
Structures.

1 Introduction

Inductive Logic Programming (ILP) [1] has been successfully applied to problems
in several application domains [2]. Nevertheless, it is recognised that efficiency
and scalability are major obstacles to the increased usage of ILP systems in
complex applications with large hypothesis spaces. Research on improving the
efficiency of ILP systems has focused on reducing their sequential execution
time, either by reducing the number of hypotheses generated (see, e.g., [3,4]), or
by efficiently testing candidate hypotheses (see, e.g., [5,6,7,8]). Another line of
research pursued by several researchers is the parallelization of ILP systems [9].

During execution, an ILP system generates many candidate hypotheses which
have a lot of similarities among them. Usually, these similarities tend to corre-
spond to common prefixes among the hypotheses. Blockeel et al. [5] defined
query-packs as a technique to exploit this pattern and improve the execution

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 78–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ILP :- Just Trie It 79

time of ILP systems. Inspired by their work, we focus on how to reduce the
amount of theorem proving to a minimum. We call our novel approach Trieing
MDIE. The key idea is to use a single trie data structure (also known as a prefix-
tree) to inherently and efficiently exploit the similarities among the hypotheses,
hence reducing memory usage and allowing us to store useful information about
clauses. But this is as close we get to query-packs, which can be considered as a
form of trie designed to improve execution speed. Instead we follow a different
approach based on Mode Directed Inverse Entailment (MDIE)[10].

To explain our approach, Trieing MDIE, let us recall that a traditional MDIE-
based procedure is performed in two stages. In the first stage an example is
chosen and the bottom clause [10] is constructed (saturation stage). In the sec-
ond stage a search is performed using the bottom clause as the lower bound of
the search space. During the second stage clauses are constructed and evaluated
using the examples. In the Trieing MDIE approach we saturate all examples
(positive and negative). From each bottom clause we generate valid clauses and
insert them in an unique trie, such that the trie contains counters describing
clause coverage. The search procedure of the second stage will therefore be re-
placed by a simple inspection of this trie to retrieve the best clause.

Trieing MDIE can be implemented in MDIE-based ILP systems such as Pro-
gol [11], Aleph [12], Indlog [8], and April [13]. It is usable in positive only data
sets and is not applicable to learn recursive theories. A further improvement
in speedup can be achieved by combining Trieing MDIE with known strate-
gies to parallelise ILP systems [9], such as, parallel exploration of independent
hypotheses and data parallelism. Notice that tries have already been proposed
previously [14] as a technique to reduce the amount of memory storage. In that
study, tries were used to store the clauses constructed during the second stage
of the MDIE method. They have also been used in FARMER [15] to overcome
efficiency issues of the Warmr system [16] for learning Association Rules.

The remainder of the paper is organised as follows. Section 2 introduces the
trie data structure and describes its implementation. In Section 3 we present the
algorithm to use tries in MDIE-based ILP systems. Section 4 presents some lim-
itations of the technique when using a background knowledge containing pred-
icates that are not pure logic programs. In Section 5 we present an empirical
evaluation of the impact in execution time of the proposed data structure. Fi-
nally, in Section 6, we draw some conclusions and propose further work.

2 The Trie Data Structure

Tries were first proposed by Fredkin [17], the original name inspired by the
central letters of the word retrieval. Tries were originally invented to index dic-
tionaries, and have since been generalised to index recursive data structures
such as terms. Please refer to [18,19,20] for the use of tries in automated theo-
rem proving, term rewriting and tabled logic programs. An essential property of
the trie data structure is that common prefixes are represented only once. This
naturally applies to ILP, as the hypothesis space is structured as a lattice and

80 R. Camacho et al.

hypotheses close to one another in the lattice have common prefixes (literals).
Hence, it clearly matches the common prefix property of tries. We thus argue
that, for ILP systems, this is an interesting property that we should be able to
take advantage of for storing hypotheses and associated information.

Using Tries to Represent Hypotheses

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term. At the entry point we have the root node.
Internal nodes represent symbols in terms and leaf nodes specify the end of terms.
Each root-to-leaf path represents a term described by the symbols labelling the
nodes traversed. Two terms with common prefixes will branch off from each
other at the first distinguishing symbol. In order to maximise the number of
common trie nodes when storing hypotheses in a trie, we used Prolog lists to
represent the clauses corresponding to hypotheses. Figure 1 presents an example
for a trie with three clauses.

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

long/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

(a) (b) (c)

Fig. 1. Using tries to represent:
(a) C = eastbound(T) :- has car(T,C), long(C).
(b) C and D = eastbound(T) :- has car(T,C), closed(C), short(C).
(c) C, D and E = eastbound(T) :- has car(T,C), closed(C), long(C).

Initially, the trie contains the root node only. Next, we insert the clause
[eastbound(T), has car(T, C), long(C)] and nine nodes are added to represent it
(Figure 1(a)). The clause [eastbound(T), has car(T, C), closed(C), short(C)] is
then inserted which requires eleven nodes. As it shares a common prefix with the
previous clause, we save the six initial nodes common to both representations
(Figure 1(b)). The clause [eastbound(T), has car(T, C), closed(C), long(C)] is

ILP :- Just Trie It 81

next inserted and we save more eight nodes, the same six nodes as before plus
two more nodes common with the second inserted clause (Figure 1(c)).

Each path in the trie terminates at a leaf data structure, the ilp frame data
structure, that we used to extend the original trie structure to store informa-
tion associated with the clause, namely info concerning the number of positive
and negative examples covered by the clause (the use of this information is
discussed in more detail next). Another important point when using tries to rep-
resent clauses is the treatment of variables. We follow the formalism proposed
by Bachmair et al. [18], where each variable in a term is represented as a distinct
constant. Formally, this corresponds to a function, numbervar(), from the set
of variables in a term t to the sequence of constants VAR0, ...,VARN , such that
numbervar(X) < numbervar(Y) if X is encountered before Y in the left-to-right
traversal of t. For example, in the term [eastbound(T), has car(T, C), long(C)],
numbervar(T) and numbervar(C) are respectively VAR0 and VAR1.

3 Trieing MDIE

MDIE-based systems use bottom-clauses to generate sets of clauses. Given a
bottom-clause ⊥e, the refinement operator generates clauses from ⊥e that will
cover at least the example e. Let us call this set S. The clauses in S share e, so we
can say that e forms S. Note that, in general, S will be arbitrarily large, and we
will need to impose some further restrictions, such as clause length restrictions.
Moreover, note that even if complete, S does not correspond to all clauses that
cover e. Indeed, it is well known that the bottom-clause is not complete: we can
generate clauses that cover an example e which cannot be refined from ⊥e [21].

Still, it is interesting to try to understand the meaning of S. An important
question in this regard is: if a clause c generated for example e covers example
x, will c or, to be more precise, a variant of c, be in x’s bottom clause, ⊥x? We
would expect this to be true for ground clauses. Indeed, if this was not the case
there must be at least a ground clause h ← g1, . . . , gi−1, gi not refined from ⊥x,
such that h ← g1, . . . , gi−1 can be refined from ⊥x. Moreover, gi must be in ⊥e

but not in ⊥x. On the other hand, if gi was in h ← g1, . . . , gi−1, gi it can be
reached from h, g1, . . . , gi−1, so it must also be in ⊥x.

Consider, for example, the following bottom-clause for an example e:
⊥e = l(A) ← h c(A, B), h c(A, C), d(B), o c(B), f(C).

and the following clause c:

c = l(A) ← h c(A, B), h c(A, C), d(C), o c(B).

Careful examination shows that ⊥e is entailed by clause c. On the other hand,
the closest clause c′ that can be generated from the bottom-clause is:

c′ = l(A) ← h c(A, B), h c(A, C), d(B), o c(B).

Although c′ is a more specific version of the original clause, it is not a vari-
ant. In this case, we cannot find a variant, even though the example is indeed

82 R. Camacho et al.

covered by the clause. This suggests the following approach: given an exam-
ple e construct the corresponding bottom clause ⊥e and generate a set S with
all legal clauses c such that c θ-subsumes ⊥e. Next, given a set of examples
{e+

1 , e+
2 , . . . , e+

n , e−1 , e−2 , . . . , e−m} construct the corresponding sets of clauses
{S+

1 , S+
2 , . . . , S+

n , S−
1 , S−

2 , . . . , S−
m}. Finding the best clauses should be just a

question of searching for clauses that appear in most S+
i and not in S−

i . More
precisely, if we allow no noise, then we would like to find the clause with the
largest coverage from ∪iS+

i \∪j S−
j . Note that we are not interested in the exam-

ples, but in the set of all clauses of interest, which would to a first approximation
be close to ∪iS+

i . Now, this set may grow quickly, and therefore needs a compact
and fast representation. It makes sense to represent sets of clauses by structures
optimised for quick access and sharing, such as the tries discussed in Section 2.

Our Algorithm

To estimate the coverage of all clauses we will walk over all examples e ∈ E
as follows. Visit positive examples first, and assume that we do not care about
clauses that only cover negative examples:

– If e ∈ E+ and c �∈ S, add c to S and state that c covers one positive example.
– If e ∈ E+ and c ∈ S, state that c covers one more positive example.
– If e ∈ E− and c ∈ S, state that c covers one more negative example.
– If e ∈ E− and c �∈ S, do nothing.

We therefore need to define an abstract set, that we call decorated set S,
with all clauses and their coverage. A decorated set is a set whose elements are
clauses, and attached to each element are counters (one counter for each class
of the learning problem). With this abstraction we can easily implement any
theory construction algorithm as shown in Figure 2.

generaliseT rieingMDIE(B,E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: a hypothesis H that explains E+ and satisfies C.

1. H = ∅
2. while E+ �= ∅ do
3. h = learnTrieingMDIE(B,E+, E−, C)
4. E+ = E+ \ covered(h)
5. H = H ∪ h
6. B = B ∪ h
7. endwhile
8. return H

Fig. 2. The greedy cover algorithm of a MDIE system implementation

The main difference with systems like Progol or Aleph concerns the inner
procedure learnTrieingMDIE(). We next describe how clauses are learned in
the Trieing MDIE algorithm (see Figure 3). The Trieing MDIE algorithm has two
basic stages. First a decorated set S is constructed (lines 1 to 9) and then the best

ILP :- Just Trie It 83

clause (according to some metric) is found by inspection of the set (line 10). The
decorated set S is constructed as described above. First, all positive examples are
processed and then a pruning procedure, prune(), is invoked to remove useless
clauses from S (e.g., clauses with coverage lower than some predefined minimum
number of examples). Next, all negative examples are also processed and then
the set is pruned again.

learnTrieingMDIE(B,E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: the best hypothesis that explains some of the E+ and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do
3. fillSet(S , B, e, C)
4. endforeach
5. S = prune(S ,C)
6. foreach e ∈ E− do
7. fillSet(S , B, e, C)
8. endforeach
9. S = prune(S ,C)
10. return bestClauseInTrie(S ,C)

Fig. 3. The learning algorithm of Trieing MDIE

Figure 4 shows how the set S is filled for each example. First we generate
the bottom clause (line 2). Then, using the bottom clause, we generate all valid
clauses4 (line 4), normalise them (line 5), and insert them in the set (line 6).
Normalisation orders the literals according to the Prolog “@ <” order relation.
We generate all renaming of existential variables to check if a variant already
exists in the trie, therefore guaranteeing a unique representation for each clause.
The insertUpdateInSet() procedure works as follows. If the example class is
positive, the clause is inserted into S and the positive counter is updated. If
the example class is negative, the clause is not added to S, only the negative
counter of the clause is updated. This means that the clauses generated from
the negative examples that are not in S are discarded.

fillSet(S , B, e, C):
Given: decorated set S , background knowledge B, example e, constraints C.

1. class = getExampleClass(e)
2. bottom = saturate(e,B, C)
3. do
4. clause = findNewV alidClause(bottom,C)
5. clause = normalise(clause)
6. insertUpdateInSet(clause,S , class)
7. while clause ! = ∅

Fig. 4. From an example to a set of clauses

4 Clauses satisfying the language and bias constraints.

84 R. Camacho et al.

The algorithm is shown to be complete when compared to the traditional
Prolog resolution approach of computing the coverage. Therefore, the coverage
calculated for a clause by the algorithm should be interpreted as an estimate
since it may not be the exact (correct) value.

4 Trie the Real World

We have presented our algorithm in the context of an ideal world, where the
background knowledge is a pure logic program, the saturated clause is generated
to its completion, and all clauses subsuming the saturated clause are enumerated.
Next we discuss how our algorithm can cope with two major issues we found in
practise: completion of the saturated clause and syntactic redundancy.

Completeness and Recall Factor

In almost every data set, ILP can only generate a subset of the full saturated
clause. This subset is controlled by a depth factor i on the maximum length of
variable chains, and also by the recall factor. Next, we discuss how these two
factors affect our algorithm.

The i constraint is a syntactic constraint that is applied uniformly to every
goal while generating the bottom-clause. By induction, it should be clear that
if a variable chain respects the i constraint in a saturated clause, it will respect
the same constraint on every other saturated clause.

The recall factor parameter indicates how many solutions to a goal can be
introduced in the bottom clause. If set to *, it will include every answer. On
the other hand, if set to a lower threshold than the actual number of different
answers a goal can generate, this parameter becomes a source of incompleteness.
As the answer order will be different with different examples, using low-values
of this parameter is not recommended when using the proposed algorithm.

Syntactically Redundant Clauses

The switching lemma tells us that if a conjunction of goals G1, . . . , Gn is satis-
fiable, then any permutation of these goals is also satisfiable. ILP systems often
take advantage of this principle to reduce the number of clauses they actually
need to generate: if one generates a(X), b(X) there is no point in also gener-
ating b(X), a(X). On the other hand, traditional ILP systems cannot use any
ordering of goals, as they must respect an ordering that is efficient for Prolog
execution. As our algorithm does not actually evaluate goals, this is unnecessary:
we can choose any ordering between goals when checking for redundant goals.
In this vein, we try to simplify all syntactically redundant clauses into a nor-
malised clauses, so that all syntactically equivalent clauses will have a canonical
representation in the trie.

ILP :- Just Trie It 85

5 Experiments and Results

To evaluate the impact of the proposed approach we adapted the April ILP sys-
tem [13] so that it could be executed with support for tries and applied the system
to well known data sets. The experiments were made on an AMD Athlon(tm)
MP 2000+ dual-processor PC with 2 GB of memory, running the Linux RedHat
(kernel 2.4.20) operating system. The data sets used were downloaded from the
Machine Learning repositories of the Universities of Oxford5 and York6. Table 1
characterises the data sets in terms of number of positive and negative examples
as well as background knowledge size.

Table 1. Data sets

Data Set | E+ | | E− | | B |
Carcinogenesis 202 174 44
Mutagenesis 136 69 21

For each data set, the system was executed for a standard MDIE implementa-
tion using a deterministic top-down breadth-first search procedure (dtd-bf) and
for MDIE using tries (Trieing). We varied the maximum depth of the clauses
from 2 (one literal in the body) to 4 (3 literals in the body). Table 2 compares
the execution times and the number of clauses generated by both approaches.

Table 2. Execution time and number of clauses generated

Execution Time Clauses GeneratedData Set Depth
dtd-bf Trieing dtd-bf Trieing

2 4 6 8,012 17,352
3 56 82 233,860 684,855Carcinogenesis

4 2,205 4,049 5,827,459 26,613,734

2 2,130 3,442 8,991 18,308
3 13,809 5,343 339,591 834,023Mutagenesis

4 21,600 7,115 9,261,589 20,445,957

The results confirm that Trieing MDIE generates considerably more clauses
(ranging from two up to five fold) than the dtd-bf MDIE approach. In spite
of considering more clauses in the search, Trieing MDIE outperforms dtd-bf
MDIE in the Mutagenesis data set. However, it is around 50% slower than dtd-
bf MDIE in the Carcinogenesis data set. Naturally, if the same number of clauses
is generated for dtd-bf MDIE, Trieing MDIE will also compare favorably.

Although the impact in execution time of Trieing MDIE is inconclusive, the
impact in accuracy is promising. In Table 3 we can observe that Trieing MDIE
achieves very good results, both in terms of accuracy and memory usage.
5 http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
6 http://www.cs.york.ac.uk/mlg/index.html

86 R. Camacho et al.

Table 3. Accuracy and memory usage (in each cell the 3 values represent clause length
of 2/3/4)

Accuracy MemoryData set
dtd-bf Trieing dtd-bf Trieing

Carcinogenesis 72 / 48 / 51 72 / 62 / 69 19 / 19 / 122 19 / 21 / 59
Mutagenesis 65 / 71 / 74 65 / 94 / 82 10 / 19 / 99 13 / 13 / 22

6 Conclusions

This paper is a novel contribution to the effort of improving ILP systems effi-
ciency. A novel technique was put forward to reduce execution time of MDIE-
based ILP systems. This improvement is achieved by avoiding the theorem prov-
ing of all clauses constructed during the search stage of a MDIE system. This
was possible by using a trie data structure to store all generated clauses, and
their coverage. Tries take advantage of common pre-fixes in clauses which leads
to a quite small memory requirements for the ILP system. Coverage information
allows the system to estimate efficiently the value of clauses.

The proposed technique was integrated in an ILP system implemented in
Prolog and empirically evaluated on three well known data sets. The results
indicate a significant reduction in execution time (for the same number of clauses
evaluated) in all data sets used. The results also indicate an increase in accuracy
since the system performs wider searches. Overall the amount of memory used
to analyse the data sets was very small.

In the future we plan to extend the evaluation process. We will first determine
the degree of non-determinism of the background knowledge of each data set.
We expect the result to improve with an increase of non-determinism of the
predicates in the background knowledge (more effort in theorem proving). To
show further the advantage in memory savings we intend to use much larger data
sets. Data from the ILP challenge from 2005, for example, will be considered.

Acknowledgements

This work has been partially supported by Fundação para a Ciência e Tecnologia
and by project Myddas (POSC/EIA/59154/2004). Nuno A. Fonseca is funded
by FCT grant SFRH/BPD/26737/2005.

References

1. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4),
295–317 (1991)

2. Ilp applications. http://www.cs.bris.ac.uk/∼ILPnet2/Applications/

http://www.cs.bris.ac.uk/~ILPnet2/Applications/

ILP :- Just Trie It 87

3. Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias
in ILP. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp.
82–103. IOS Press, Amsterdam (1996)

4. Camacho, R.: Improving the efficiency of ilp systems using an incremental lan-
guage level search. In: Annual Machine Learning Conference of Belgium and the
Netherlands (2002)

5. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the efficiency of Inductive Logic Programming through the use of
query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

6. Costa, V.S., Srinivasan, A., Camacho, R.: A note on two simple transformations
for improving the efficiency of an ILP system. In: Cussens, J., Frisch, A.M. (eds.)
ILP 2000. LNCS (LNAI), vol. 1866, Springer, Heidelberg (2000)

7. Costa, V.S., Srinivasan, A., Camacho, R., Hendrik, Van Laer, W.: Query transfor-
mations for improving the efficiency of ilp systems. Journal of Machine Learning
Research (2002)

8. Camacho, R.: Inductive Logic Programming to Induce Controllers. In: PhD thesis,
Univerity of Porto (2000)

9. Fonseca, N.A., Silva, F., Camacho, R.: Strategies to Parallelize ILP Systems. In:
Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 136–153.
Springer, Heidelberg (2005)

10. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

11. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

12. Aleph, http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
13. Fonseca, N.A., Silva, F., Camacho, R.: April - An Inductive Logic Programming

System. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 481–484. Springer, Heidelberg (2006)

14. Fonseca, N.A., Rocha, R., Camacho, R., Silva, F.: Efficient Data Structures for
Inductive Logic Programming. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003.
LNCS (LNAI), vol. 2835, pp. 130–145. Springer, Heidelberg (2003)

15. Nijssen, S., Kok, J.N.: Faster Association Rules for Multiple Relations. In: Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence (IJCAI
2001), pp. 891–896 (2001)

16. Dehaspe, L., De Raedt, L.: Mining Association Rules in Multiple Relations. In:
Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer,
Heidelberg (1997)

17. Fredkin, E.: Trie Memory. Communications of the ACM 3, 490–499 (1962)
18. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative-Commutative Discrimi-

nation Nets. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993,
and TAPSOFT 1993. LNCS, vol. 668, pp. 61–74. Springer, Heidelberg (1993)

19. Graf, P.: Term Indexing. In: Graf, P. (ed.) Term Indexing. LNCS, vol. 1053,
Springer, Heidelberg (1996)

20. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–
54 (1999)

21. Yamamoto, A.: Which Hypotheses Can Be Found with Inverse Entailment? In:
Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 296–308. Springer,
Heidelberg (1997)

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

Learning Relational Options for Inductive Transfer in
Relational Reinforcement Learning

Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghe

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, B-3001 Leuven

Abstract. In reinforcement learning problems, an agent has the task of learning
a good or optimal strategy from interaction with his environment. At the start of
the learning task, the agent usually has very little information. Therefore, when
faced with complex problems that have a large state space, learning a good strat-
egy might be infeasible or too slow to work in practice. One way to overcome
this problem, is the use of guidance to supply the agent with traces of “reason-
able policies”. However, in a lot of cases it will be hard for the user to supply
such a policy. In this paper, we will investigate the use of transfer learning in
Relational Reinforcement Learning. The goal of transfer learning is to accelerate
learning on a target task after training on a different, but related, source task. More
specifically, we introduce an extension of the options framework to the relational
setting and show how one can learn skills that can be transferred across similar,
but different domains. We present experiments showing the possible benefits of
using relational options for transfer learning.

Keywords: Relational Reinforcement Learning, Transfer Learning, Options.

1 Introduction

In reinforcement learning [12], an agent can observe its world and perform actions in it.
The agent’s learning task is to maximize the reward he obtains. In order to enable agents
to learn in larger and more complex problem domains, abstraction has been an important
factor. One important class of abstractions consists of hierarchical methods which focus
on abstraction over the sequential and temporal aspects of a task [1]. Another direction
of abstraction is relational reinforcement learning [14] which focuses on using relational
representations for both the world (i.e., states and actions) and the learned policies.

One of the difficulties that remain is that at the start of the learning task, the agent has
no or little information and is forced to perform random exploration. As a consequence,
learning can become infeasible or too slow in practice for complex domains.

One of the approaches to tackle this problem is the integration of guidance in re-
inforcement learning [5]. In this approach, traces of “reasonable policies” are used to
overcome the problem of forced random exploration. The drawback of this approach
is that the user still needs to provide such a “reasonable policy” that will provide the
learning agent with some positive reinforcement.

Another approach that targets this problem and which has received a lot of attention
recently is inductive transfer or transfer learning. Transfer learning is concerned with
learning in one task to benefit learning in different but related tasks. More specifically,

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 88–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Relational Options for Inductive Transfer 89

in a reinforcement learning context, one of the benefits of transfer learning can be that
the agent is able to learn a new task faster, i.e., with less training experience.

In this paper, we want to investigate the feasibility and benefit of using hierarchical
relational abstractions for inductive transfer in reinforcement learning. The options
framework is used for hierarchical abstractions [13]. Options are macro-actions that
execute until some termination condition is satisfied and have been shown to be well
suited to build high-level skills [9]. We introduce relational options as a combination of
options with relational abstractions and use them to model skills that can be transferred
across similar, but different domains.

Our contribution is threefold. First, we extend the options framework to the relational
setting and show the benefits of such relational options. Second, we propose a method
to learn options that can be used to transfer knowledge across different reinforcement
learning domains using the framework of relational options. Third, we empirically eval-
uate if skills learned as options in previous tasks can help the reinforcement learning
agent in more difficult tasks.

2 Background

2.1 Relational Reinforcement Learning and the Blocks World

Reinforcement Learning (RL) [12] is often formulated in the formalism of Markov Deci-
sion Processes (MDPs). An MDP < S, A, T, R > can be characterized by a state space
S, an action space A, a state transition function T and an immediate reward function R.
The transition function T : S × A × S → [0, 1] defines a probability distribution over
the possible next states: T (s, a, s′) denotes the probability of landing in state s′ when
executing action a in state s. The reward function R : S × A → R defines the reward
for executing a certain action in a certain state.

The task of reinforcement learning consists of finding an optimal policy for a certain
MDP, which is (initially) unknown to the RL-agent. As usual, we define it as a function
of the discounted, cumulative reward, i.e. find a policy π : S × A �→ [0, 1], that maxi-
mizes the value function: V π(s) =

∑
a∈A π(s, a)[R(s, a) + γ

∑
s′ T (s, a, s′)V π(s′)],

where 0 ≤ γ < 1 is the discount factor, which indicates the relative importance of
future rewards with respect to immediate rewards.

The RRL-system [6] applies Q-Learning in relational domains, by using a rela-
tional regression algorithm to learn a Q-function that approximates the quality of ex-
ecuting a certain action in a certain state. The quality value for executing action a in
state s with reward R(s, a) and resulting state s′ is defined as Q(s, a) ≡ R(s, a) +
γ maxa′Q(s′, a′). Knowing these Q-values, an optimal policy π∗ can be constructed as
π∗(s) = argmaxa Q(s, a).

Throughout the paper, we will use the blocks world as an example application. We
use a blocks world with a varying number of blocks, where blocks can only be stacked
neatly on top of each other and the table or floor is of infinite size, i.e., it is always
clear and ready to store an extra block. Consider a set of blocks {b1, b2, . . . bn}, every
block bi stands either on the floor (denoted on(bi, f loor)) or on some other block bj

(denoted on(bi, bj)) and on every block bi there is either exactly one other block or it

90 T. Croonenborghs, K. Driessens, and M. Bruynooghe

is clear (denoted clear(bi)). The agent can take a clear block bi and put it on another
clear block bj or on the floor (denoted move(bi, bj) or move(bi, f loor) respectively).

2.2 The Options Framework

The theory of options has been introduced by Sutton et al. [13]. An option can be
viewed as a subroutine, consisting of an option policy that specifies which action to
execute for a subset of the environment states, an initiation set consisting of all states
in which the option can be initiated and a termination condition, specifying when the
option terminates. Note that an option is not just a sequence of actions, but a closed-loop
policy taking actions depending on changes in the world.

More formally, an option o consists of three parts: 1) Io ⊆ S : S �→ {0, 1} 2)
βo : S �→ [0, 1] 3) πo : Io × A �→ [0, 1] with Io the initiate set which specifies the
states in which the option can be initiated, βo the termination condition which specifies
the probability of terminating in state s for all s ∈ S and πo the option policy , which
specifies the probability of executing a in state s for all a ∈ A, s ∈ Io. Since an option
policy can also invoke other options, creating hierarchical structures, the action space
A is extended to be the set of all options and primitive actions.

To update the Q-value of an option o that is started in state s and terminated in
state s′, the following equation can be used (similar to the one for primitive actions):
Q(s, o) ≡ R(s, o)+γdmaxo′Q(s′, o′) with d the duration of the option (i.e. the number
of time steps between s and s′). In this work, we also use the actions executed by the
option policy to update their Q-values.

2.3 Transfer Learning

One of the motivations for relational reinforcement learning is that by using parameter-
ized goal and policy descriptions it allows learned results to be applied in similar, but
different worlds. This transfer of knowledge is however limited to learning problems
that exhibit the same structure, only differing in the identity of certain objects or the
number of objects involved [4].

Recently, several approaches have been proposed to transfer knowledge between dif-
ferent propositional reinforcement learning tasks. Often, a user-defined mapping is used
to relate the new task to the task for which a policy was already learned.

Some approaches use the learned knowledge to aid exploration in new (and usually
more difficult) tasks. Examples of these are [10] and [8]. The most important draw-
back of these methods is that a lot of useful information is lost when only using the
transferred knowledge for exploration.

Perkins and Precup [11] investigate the use of non-relational options to transfer
knowledge. They however only study the scenario where the agent has to solve dif-
ferent tasks drawn from a given distribution in which the agent does not know which
task he has to solve during a certain episode. The approach of [9] also uses options to
transfer knowledge where the need for a mapping between different tasks is avoided by
introducing a so-called “agent-space”. This space is generated by a feature set that is
present and retains the same semantics across successive problem instances.

Learning Relational Options for Inductive Transfer 91

The first approach that uses the generalizing power of relational learners is [15]
where a relational rule learner is used to generate advice to speed up reinforcement
learning. This advice is incorporated into the new task by adding the information about
Q-values as soft-constraints to the linear optimization problem that approximates the
Q-function for the next task which means that the advice needs to be propositional-
ized again for the new task. All advice is added to one big optimization problem, while
the hierarchical abstractions in our approach are a first step towards a more modular
representation of the policy.

3 Relational Options

The options framework can easily be extended to the relational setting by using a re-
lational state and action space. We represent a relational policy by a set of rules of
the following form: CS : CSA → A, with CS a conjunction of tests that only involve
the state space, CSA a conjunction of tests on the state-action space and A the action
predicted by this rule where the arguments are set by CSA. When a policy needs to de-
termine which action to execute in a state, it searches for the top-most rule for which CS
is satisfied and an action A exists such that CSA holds. Action A (with its arguments set
according to CSA) will be predicted by the policy. Note that a distinction between CS
and CSA is not strictly necessary. The predicate s/1 binds its argument with the current
state and the goal -predicates are used to query the goal information: the goal on/2
predicate succeeds if the current goal of the agent is on(A, B) and it will bind A and B
with its arguments. Consider as an example an optimal policy for the on(A, B) goal:
����
���

s(S), goal on(A, B), clear(S,A), clear(S,B) : true → move(A,B)
s(S), goal on(A, B), clear(S,A) : above(S, X, B), clear(S,X) → move(X,floor)
s(S), goal on(A, B), clear(S,B) : above(S,X, A), clear(S,X) → move(X,floor)

s(S), goal on(A, B) : above(S,X, A), clear(S,X) → move(X,floor)

Although this relational extension of options is straightforward, it offers some advan-
tages over regular options. Not only can they deal with relational worlds, it is also easy
to extend them to a parameterized setting by expressing the policy in terms of variables
instead of referencing concrete objects and by making it rely on the structural aspects
of the task. Another advantage is that by having parameterized options, it also becomes
possible to have recursive calls within the option policy.

Consider as an example an option that clears a certain block, instead of defining
or learning a different option for every block that occurs in the world, it is possible
to define one generalized option that can clear any block by introducing a variable as
parameter of the option (as illustrated in Example 1). Note that this option does not
specify a sequence of actions but a closed-loop policy deciding every time step which
action to execute as long as the option is not terminated.

Example 1 (option for clear(X)).

Iclear(X) : s(S) �→ 1

βclear(X) :
{

s(S), clear(S, X) �→ 1
s(S), ¬clear(S, X) �→ 0

πclear(X) :
{

s(S), goal clear(X) : on(S, Y, X), clear(S, Y) → move(Y, floor)
s(S), goal clear(X) : on(S, Y, X) → clear(Y)

92 T. Croonenborghs, K. Driessens, and M. Bruynooghe

4 Relational Skill Learning

One of the main difficulties in a lot of traditional transfer learning approaches is that in
order to transfer knowledge one needs to provide a mapping from the source domain
to the target domain. This problem is already partially overcome by using a relational
representation since this allows us to abstract over specific object identities and even
the number of objects involved.

In this paper we would like to transfer knowledge in the form of skills. Since we
represent these skills as relational options, we need to specify the initiation set, the
termination condition and the policy. To learn a specific option, the most straightforward
approach would be to set the initiation set to true, the termination condition such that it
is satisfied when a certain goal is reached and learn the policy with a standard relational
reinforcement learning algorithm.

We take a slightly more advanced technique, motivated by the following observa-
tions: First of all, we would like to extract different skills from a single learning expe-
rience. Secondly, note that the Q-function contains more information than is actually
needed for the optimal policy, i.e. it only requires a mapping from a state to the best ac-
tion. Since the Q-function in a sense models the distance to reward, it does not always
give the best generalization to new domains (with e.g. a different number of objects).
Moreover, we would like the policy of the learned skill to be as interpretable as possible.
Another disadvantage of traditional Q-learning approaches is that when an action needs
to be predicted for a given state, an iteration is needed over all possible state-action pairs
for that state to predict the action that results in the highest Q-value in case of a greedy
policy. Since in complex domains with a lot of objects, the number of possible actions
can be very large, we would like to avoid this iteration over all possible actions.

Therefore, we propose the following approach: The initiation set and termination
condition can in the simplest case be set as specified above. Since the learned policy
will not always be optimal it could be the case that the option never terminates. To
avoid this scenario, the termination condition is changed so that every non-goal state
has a non-zero probability of terminating the option. A skill policy for a certain task is
built as follows where the first three steps are similar to the P -learning approach [6]:

1. use an RRL algorithm to learn to solve this task
2. create training examples of state-action pairs labeled as policy-based or not
3. use the TILDE system [2] to learn a relational decision tree that predicts whether or

not the action will be executed by the policy
4. extract a relational policy

To create the dataset for TILDE, we create a number of random states and check which
action would be executed by the learned policy. This action gets the label “policy action”,
other actions the label “non-policy action”. For the moment we do not use any sampling
techniques, but in the future we would like to investigate possible sampling techniques as
well as different schema to create learning examples. One possibility is to only include
examples of state-action pairs for which the Q-value is significantly better or worse than
other state-action pairs for the same state (similar to the approach taken in [15]).

The learned decision tree for this binary classification problem predicts if, given a
certain state and action, the action is the one that would be executed by the policy (or the

Learning Relational Options for Inductive Transfer 93

probability if we use probability trees). Although in future work we plan to investigate
extraction schemas that obtain stochastic policies from these probability trees, at the
moment we only look at the majority class in each of the leaves. This means we can
do some bottom-up post-pruning if both the ’yes’ and ’no’ branch predict the same
majority class. Figure 1 shows an example of a policy tree for the clear(X) skill.

[htb]

s(S),goal_clear(X),action(move(A,B))

clear(S,A)?

clear(S,B)?

yes

non_policy

no

non_policy

no

above(S,A,X)?

yes

policy

yes

non_policy

no

Fig. 1. Policy tree for clear(X) that expresses that an action is a “policy action” if both argu-
ments of the move action are clear and the agent moves a block above the one that needs to be
cleared

To avoid the action iteration, we extract from this tree only those rules that predict
the ’policy action’ class. These rules give the constraints on the action to be part of this
policy. If we do this for the tree in Figure 1, we only obtain the following rule: s(S),
goal clear(X), action(move(A, B)), clear(S, A), clear(S, B), above(S, A, X) →
policy. A policy is obtained by transforming each rule to the form CS : CSA → A,
the order of the rules is not important since the decision tree partitions the state-action
space. For computational reasons it could be interesting to first consider rules with the
least negations in them. A default rule is also added that predicts a random action in case
none of the other rules apply. For the policy tree in Figure 1, this gives the following
relational policy:{

s(S), goal clear(X) : clear(S, A), clear(S, B), above(S, A, X) → move(A, B)
s(S), goal clear(X) : random block(X), random block(Y) → move(A, B)

There are different approaches to extract more than one skill. One possibility is to
repeat the above procedure with different language bias settings, e.g. to obtain a dif-
ferent level of generalization. For instance the approach of [9] can be modeled with
our approach by using appropriate language bias settings for both “problem-space” and
“agent-space” skills. Another approach would be to specialize the initiation set of an
option. For instance if the top test of the policy tree is not selective on the arguments of
the action, the policy will be different for the two partitions of the state space.

94 T. Croonenborghs, K. Driessens, and M. Bruynooghe

5 Experimental Evaluation

Blocks World. In a first experiment, we consider the blocks world with as target task
the on(A, B)-goal, i.e. the agent receives a reward iff block A is directly on top of block
B. The number of blocks is varied between 5 and 15 every episode. During exploration,
the learning agent is allowed 10 steps more than needed to reach the goal. To evaluate
the agents’ learning behavior, 100 tests are performed following a greedy policy check-
ing the percentage of episodes in which an optimal path is followed. The RRL-TG[3]
method is used in all experiments to approximate the Q-function. Figure 2(left) shows
the results averaged over 5 different runs.

First of all, we will compare the learning behavior of a standard RRL agent using
only primitive actions and an agent that can also use the clear(X) option as defined
in Example 1. As expected, Figure 2(left) clearly shows an improvement in learning
behavior for the agent that can use this skill.

Next, we would like to investigate how difficult it is to learn such a clear(X) skill.
To learn this skill, we set up a blocks world environment with the clear(X)-goal in
which the number of blocks is varied between 5 and 10. The Q-function learned by the
agent after 100 episodes is taken to create training examples. This dataset is created
using states from 50 new episodes1. The policy trees learned in the 5 different runs all
looked similar to the one shown in Figure 1. They only differed in the order of the tests
and the distributions in the leaves. Note that by only looking at the majority class noise
in the Q-function can be filtered out. As a result the learned policy tree is optimal, while
the policy based on the Q-function was not. Of course, by only looking at the majority
class, it could also happen that important information is filtered out. We will address
these issues in future work.

Since in general we do not know whether the learned skill is optimal, we set the
termination condition so that it terminates for states in which clear(X) holds and with
a probability of 0.05 otherwise. Figure 2(left) shows the learning behavior of a learning
agent using primitive actions and this learned option. Since an optimal policy is learned
for this clear(X) skill, the learning behavior is similar to the one with the user-defined
clear(X) skill and significantly better than the learning behavior of the agent with only
primitive actions.

Tic-Tac-Toe. We also present an experiment using tic-tac-toe, an application from the
general game playing challenge. If both players play optimally it results in a draw. The
game is very asymmetric and although it is relatively easy to learn to draw against an
optimal player when one is allowed to start the game, it becomes really hard to do this
when the opposing player is allowed to act first. In fact, against a starting player that
optimizes his game strategy against a random player, the probability of playing a draw
with a random strategy is only 0.52%. This sparsity of the reward makes it very hard to
build a good policy starting from scratch against an optimal player. We therefor devised
an experiment which allowed the agent to first learn how to draw against a player that
performs 1-step-look-ahead and transfer this knowledge as a skill to the experiment

1 Instead of using episodes, it is also possible to create the dataset using random states, i.e.
episodes of length one.

Learning Relational Options for Inductive Transfer 95

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

A
v
er

a
g
e

p
er

ce
n
ta

g
e

o
f
o
p
ti
m

a
l
p
a
th

s

Episode

Blocks world

without clear skill
with clear skill
with learned clear skill

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

A
v
er

a
g
e

p
er

ce
n
ta

g
e

o
f
d
ra

w
s

Number of games

Tic-Tac-Toe

without skill
with learned skill

Fig. 2. Results in the blocks world (left) and the Tic-Tac-Toe (right) domain

against the optimal player. Note that the first is not a subtask of the latter. The 1-step-
look-ahead player will play winning moves if they exist and counter winning moves of
the opponent. However, in states where neither exist, it will play randomly and therefor
will not be immune to the generation of forks. The skill is built in a similar way as
in the blocks world experiment. To learn the option policy the agent plays 250 games
against the 1-step-look-ahead player, states from 1000 random games are used to create
the dataset. The language used by TG includes both non-game-specific knowledge (e.g.
search related features) and game-specific features that can be automatically extracted
from the specification of the game.

Figure 2(right) shows the improvement in learning behavior against the optimal
player. In future work, we will investigate different possibilities to refine the termination
condition of the learned skills while learning in the new task. This will be especially
helpful in settings where the skill does not try to solve a subtask since the skill policy
may only be useful in parts of the state space of the new task.

Grid World. In a last experiment, the agent is placed in an environment consisting of
a sequence of two-dimensional rooms. The rooms are connected with doors which the
agent can only pass if he possesses a key of the same color as the door. The primitive
actions available to the agent include four movement actions (up,north,left and right)
and a pickup action that picks up the key that is located at the agent’s location (if ap-
plicable). The agent can execute at most 500 actions per episode and receives a reward
of 1 if he exits the last room and 0 otherwise. Instead of using a single MDP, the agent
has to solve different instantiations of this environment. Each problem consists of one
to five rooms where the dimensions of each room are varied between three and five.
Each room contains one to three keys of possibly different colors where at least one of
them matches the door through which he can leave the room. The state representation
includes the dimensions of the different rooms, the locations and colors of the doors,
the location and colors of the keys, the keys the agent possesses, the agent’s location
and the goal location. The language bias consists of tests that can query the features of
the state and action space and relational information between locations.

The agent can transfer knowledge through two different skills. The first skill is the
pickup key(Color) skill which finds a key of color Color in the current room and
picks it up. The second skill is the find door skill which navigates the agent to the exit

96 T. Croonenborghs, K. Driessens, and M. Bruynooghe

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000

A
v
er

a
g
e

re
w

a
rd

Episode

Grid world (reward)

no options
pickup key option
find door option
both options

Episode

A
v
er

a
g
e

n
u
m

b
er

o
f
p
ri
m

it
iv

e
a
ct

io
n
s

Grid world (actions)

no options
pickup key option
find door option
both options

Fig. 3. Results in the multi-room grid wold domain

door in the current room. To learn the policies for these skills the agent is allowed 200
exploration episodes. The dataset is created using states from 100 different episodes.

To evaluate the performance of the different agents, we created 5 different sets, each
containing 200 problem instantiations that were drawn randomly from the above dis-
tribution. For each of these sets the option policies were learned and we performed 5
different runs testing after every 200 exploration episodes the performance of a greedy
policy on the entire set. The averages over these 25 runs are shown in Figure 3.

A first thing to note is that when the learning agent has extra skills to his disposal
he can solve more problems using just random exploration. One can also see that an
agent that learned the find door option solves about the same number of problems
as the standard RRL agent but he needs less actions on average. The agent with the
pickup key/1 option solves more problems with less actions. If we draw problem in-
stantiations from a distribution where finding the door is the bottleneck, only using the
find door option performs better than just using the pickup key/1 option2. An agent
that has learned both skills always gives the best results.

6 Conclusions and Further Work

In this paper we presented an extension of the options framework to the relational set-
ting. We have also shown how this framework can be used to learn relational skills that
can be transferred across similar, but different tasks.

In future work, we will perform a more in depth analysis of the approach we pre-
sented. Currently, we have not considered the problem of determining which skills to
learn. Since we learn parameterized options this is less of a problem, since it will often
be possible to learn a skill for every predicate in the state representation (e.g. usually
clear/1 and on/2 in the blocks world).

To decrease the distinction between the skill learning and exploitation phase or when
learning these skills is hard, one could consider the approach of Fern et al. [7] to gen-
erate extra learning experience by using relational abstractions to create artificial goals
in non-goal states. E.g. in every state there will be a clear block, so one can assign the
clearance of that block as a goal to create training experience for the clear(X) goal.

2 We did not include the learning graphs of this experiment in the paper due to space restrictions.

Learning Relational Options for Inductive Transfer 97

Furthermore, at the moment we only consider the use of skills learned in previous
tasks. A natural extension would be to focus on a hierarchical decomposition and learn
new skills in the current task and to modify previous learned skills while learning in the
new task.

Acknowledgments

This research is supported by the Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT-Vlaanderen) and by GOA 2003/08 ”Inductive
Knowledge Bases”.

References

1. Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete-
Event Systems journal 13, 41–77 (2003)

2. Blockeel, H., De Raedt, L.: Top-down induction of first order logical decision trees. Artificial
Intelligence 101(1-2), 285–297 (1998)

3. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learning
through the use of an incremental first order decision tree learner. In: Flach, P.A., De Raedt,
L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 97–108. Springer, Heidelberg (2001)

4. Driessens, K., Ramon, J., Croonenborghs, T.: Transfer learning for reinforcement learning
through goal and policy parameterization. In: ICML Workshop on Structural Knowledge
Transfer for Machine Learning (Online Proceedings) (2006)

5. Driessens, K., Dzeroski, S.: Integrating guidance into relational reinforcement learning. Ma-
chine Learning 57(3), 271–304 (2004)

6. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learn-
ing 43, 7–52 (2001)

7. Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language bias:
Solving relational Markov decision processes. Journal of Artificial Intelligence Research 25,
85–118 (2006)

8. Fernández, F., Veloso, M.: Probabilistic policy reuse in a reinforcement learning agent. In:
AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents
and multiagent systems, pp. 720–727. ACM Press, New York (2006)

9. Konidaris, G., Barto, A.: Building Portable Options: Skill Transfer in Reinforcement Learn-
ing. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January, 6-12 2007, pp. 2895–900 (2007)

10. Madden, M.G., Howley, T.: Transfer of Experience Between Reinforcement Learning Envi-
ronments with Progressive Difficulty. AI. Rev. 21(3-4), 375–398 (2004)

11. Perkins, T.J., Precup, D.: Using Options for Knowledge Transfer in Reinforcement Learning.
In: Technical Report UM-CS-1999-034, University of Massachusetts, MA, USA (1999)

12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge,
MA (1998)

13. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)

14. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An overview. In:
Proceedings of the ICML 2004 Workshop on Relational Reinforcement Learning (2004)

15. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning and
advice taking. In: Proceedings of the 17th European Conference on Machine Learning, pp.
425–436 (2006)

Empirical Comparison of “Hard” and “Soft” Label
Propagation for Relational Classification

Aram Galstyan and Paul R. Cohen

USC Information Sciences Institute
Center for Research on Unexpected Events (CRUE)

Marina del Rey, CA, USA
{galstyan,cohen}@isi.edu

Abstract. In this paper we differentiate between hard and soft label propagation
for classification of relational (networked) data. The latter method assigns proba-
bilities or class-membership scores to data instances, then propagates these scores
throughout the networked data, whereas the former works by explicitly propagat-
ing class labels at each iteration. We present a comparative empirical study of
these methods applied to a relational binary classification task, and evaluate two
approaches on both synthetic and real–world relational data. Our results indicate
that while neither approach dominates the other over the entire range of input data
parameters, there are some interesting and non–trivial tradeoffs between them.

1 Introduction

Many relational classification algorithms work by iteratively propagating information
through relational graphs. The main idea behind iterative approaches is that “earlier” in-
ferences or prior knowledge about data instances can be used to make “later” inferences
about related entities. Examples include relaxation labeling for hypertext categorization
[1], belief propagation for probabilistic relational models [2], relevance propagation
models for information retrieval on the web [3], iterative label propagation [4,5], rela-
tional neighbor classifiers [6,7,8].

While there are various ways of propagating information through relational graphs,
here we differentiate between two general approaches: In the first approach, hard class
label assignments are made at each iteration step. We call this approach label propa-
gation1 (LP). The second approach, which we call score propagation (SP), propagates
soft labels such as class membership scores or probabilities. To illustrate the difference
between these approaches, assume that we want to find fraudulent transactions given a
relational graph of transactions (such as in Figure 1) and some known fraudulent nodes.
For each transaction, we could estimate its probability of being fraudulent by using in-
formation about its neighboring nodes. The SP algorithm propagates these probabilities
throughout the system and then makes a final inference by projecting the probabilities
onto class labels. The LP algorithm, on the other hand, estimates these probabilities at

1 We note that sometimes the term “label propagation” is also used to describe soft–label
propagation.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 98–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Empirical Comparison of “Hard” and “Soft” Label Propagation 99

the first step, finds the entities with the highest probability of being fraudulent, labels
them as fraudulent, and then iterates this procedure.

We would like to emphasize that despite the term “hard label propagation”, we will
focus on comparing two algorithms with respect to their accuracy of ranking rather than
explicit classification. For the ranking problem, the difference between two approaches
can be explained as follows: The SP algorithm is analogous to a diffusion-like process
on a network, where initially labeled nodes act as heat sources, and the rank of a node
is determined by its temperature. The LP algorithm, on the other hand, is similar to
a discrete epidemic model, where, starting from initially infected nodes, the epidemic
spreads to other nodes, and a node’s rank depends on how early in the epidemic process
it was infected.

Intuitively, one could think that the LP algorithm described above would not perform
as well as the soft label propagation, since it makes hard “commitments” that cannot
be undone later when more information is propagated through the network. Our main
finding is that this is not always the case. We present results of extensive experiments
for a simple binary classification task, using both synthetic and real–world data. For
the synthetic data, we empirically evaluate both algorithms for a wide range of input
parameters, and find that LP is usually a better choice if the overlap between the classes
is not strong. More interestingly, we find that even when the performances of two al-
gorithms are similar in terms of their AUC (area under the curve) scores, they might
have significantly different ROC (Receiver–Operator Characteristics) curves: Specifi-
cally, we observe that this difference can be significant for small false positive rates.
The other important observation is that for certain data parameters the LP algorithm is
much more robust to the presence of noise in the initial class label assignments. Thus,
propagating hard labels instead of continuos scores might be a better choice if the data
is noisy.

In addition to our experiments on synthetic data, we tested both algorithms on the
CoRA data–set of hierarchically categorized computer science papers. We constructed a
separate classification problem for each CoRA topic in the Machine Learning category.
Despite certain differences between our results for the CoRA and synthetic data, we
observe that the hard label propagation scheme is indeed more robust to noise for the
majority of the topics considered. Our CoRA experiments also reproduce the different
ROC behaviors for certain topics, although the difference was not as significant as in
the case of the synthetic data.

The rest of the paper is organized as follows: in the next section we state the binary
classification problem and describe the synthetic data used in our experiments. We in-
troduce hard and soft label propagation algorithms in Section 3. Section 4 describes
related work. The results of experiments on both synthetic and the CoRA data are pre-
sented in Sections 5 and 6, respectively. Concluding remarks are made in Section 7.

2 Problem Settings

Most relational classification techniques rely on both intrinsic and relational attributes
of data for making inferences. For instance, if the task is to classify scientific papers
into topics, both intrinsic features (e.g., frequency of certain keywords) and relational

100 A. Galstyan and P.R. Cohen

Fig. 1. Schematic representation of networked data

attributes (e.g., common authors, references, etc.) may be used. Here we are mainly in-
terested in the relational aspect of the classification, so we ignore intrinsic attributes of
the data instances and instead examine the effect of the relational structure on the clas-
sification accuracy. Specifically, we assume that the data is represented as an undirected
graph, where nodes correspond to data instances and edges represent relationships be-
tween them.

Now we state the classification problem that we are interested in. Assume a rela-
tional graph as schematically illustrated in Figure 1. In the classification problem, one
wants to find the set A of nodes that belong to class A (the shaded region), given the
relational graph and a small subset A0 ∈ A of labeled A instances. In the ranking prob-
lem addressed in this paper, we are merely interested in ranking the nodes according
to their similarity to the class A. We denote the nodes not in A as class B, and the
corresponding set as B. In general, class B itself might comprise of other classes that
will be reflected in the topology of the network. This is the case for the CoRA data–set
studied in Section 6. For the synthetic data, however, we will assume a homogenous
structure for each class. Specifically, within each class, we randomly distribute links
between pairs of nodes with probability pa,b

in so that the relational structures within the
classes are characterized by Erdos–Renyi graphs G(NA; pa

in) and G(NB ; pb
in)2. NA

and NB are the number of nodes in respective classes. Then we randomly establish
links across the classes (blue edges in Fig. 1), by assigning a probability pout to each of
the NANB possible links. The average number of links per node (connectivities) within
and across the classes are given by zaa = pa

inNA, zbb = pb
inNB , zab = poutNB and

zba = poutNA. If the sizes of two classes are not equal then zab �= zba.
Note that our construction of the synthetic relational graph enforces the homophily

condition: Namely, nodes from the same class are likely to be better-connected. Thus,
we should expect the difficulty of the classification task to be strongly affected by the
ratio of the connectivities within and across the classes. We will use the ratio zab/zaa ≡
zout/zin to characterize the degree of the homophily. A small ratio means that the

2 Erdos–Renyi graph G(N; p) is constructed by independently linking each pair of N nodes with
probability p.

Empirical Comparison of “Hard” and “Soft” Label Propagation 101

classes are well–separated (strong homophily), so that most classification algorithms
should do a good job of assigning correct class labels. For large values of zout/zin, on
the other hand, the difference between the link patterns within and across the classes
diminishes, thus making it more difficult to classify nodes correctly. We examine the
effects of the class overlap on the classification accuracy in the experiments described
in Section 5.

3 Algorithms

The score propagation mechanism employed here is very similar to the suspicion scor-
ing model of Macskassy and Provost [9], as well as to the relevance propagation models
from the information retrieval literature [3,10]. The label propagation algorithm, on the
other hand, can be viewed a discrete (binary) analogue of the score propagation scheme.
Below we describe both approaches in more details.

3.1 Score Propagation

By score propagation we mean a type of iterative procedure that propagates continuous–
valued class membership scores from the labeled class instances to the unlabeled ones.
In our case, the initially labeled set contains only nodes of type A. Hence, we associate a
score si with node i, that describes its relative likelihood of being in the class A. These
scores are updated iteratively, allowing the influence of the labeled nodes to spread
throughout the data. The main assumption behind this scheme is that the nodes that
belong to the class A will have higher scores at the end of the propagation process.

There are many possible ways to implement the propagation mechanism. Here we
use a scheme described by the following equation:

st+1
i = s0

i + αis
t
i + β

∑
j

Wijs
t
j , (1)

where s0
i is a static contribution that might depend on a node’s intrinsic attributes, αi

and βi are parameters of the model, Wij = 1 if nodes i and j are connected and Wij =
0 otherwise. For instance, in the relevance propagation model from the information
retrieval literature, s0

i is the content–based self-relevance score of node i, αi = const <
1, and βi = (1−αi)/zi, where zi is the number of neighbors of node i. In the suspicion
scoring model of Ref. [9], s0

i = 0, αi = α for all i, and β = (1 − α)/
∑

i,j Wij .
Our experiments with variants of the SP schemes suggest that they all behave in

qualitatively similar ways. Here we report results for a simple parameter-free version
obtained by setting s0

i = αi = 0, and βi = 1/zi. The resulting updating scheme is

st+1
i =

1
zi

∑
j

Wijs
t
j . (2)

In other words, at each iteration, the class membership score of a node is set to the
average of the class–membership scores of its neighbors at the previous iteration. We
note that this model closely resembles the random walk model of Ref. [11].

102 A. Galstyan and P.R. Cohen

The scores of the initially labeled A nodes are clamped to 1, while the rest of the
nodes are initially assigned a score 0. Because of the clamping, the former nodes act
as diffusion sources, so that the average score in the system increases with time and
in fact converges to 1. Therefore, we stop the iteration after the average score exceeds
some predefined threshold, chosen to be 0.9 in the experiments reported below. We
observed that the final ranking of the nodes according is not sensitive to the choice of
this threshold.

3.2 Label Propagation

For the hard label propagation, LP, we propose a simple mechanism that is in some
sense the discrete (binary) analogue of the SP scheme. Let us assign binary state vari-
ables σi = {0, 1} to all nodes so that σi = 1 (or σi = 0) means that the i–th node is
labeled as type A (or is unlabeled). At each iteration, and for each unlabeled node, we
calculate the fraction of the labeled nodes among its neighbors, ωt

i =
∑

j Wijσ
t
j/zi,

find the nodes for which the fraction is the highest, and label them as type A . This
procedure is then repeated for Tmax steps.

The label propagation process above can be viewed as a combination of the score
propagation scheme from the previous section and a nonlinear transformation applied
to the scores after each iteration. This nonlinear transformation constitutes a simple
inference process where the class-membership scores of a subset of nodes are projected
into class labels. Indeed, starting from the initially labeled instances, let us iterate the
SP scheme in Equation 2 once. Then, obviously, on has s1

i = ω1
i . That is, the nodes

that have the largest fraction of the labeled nodes among their neighbors, also have
the highest score. The step-like transformation then assigns a score 1 to all the nodes
sharing the maximum score, and sets the score of the remaining nodes to zero, thus
acting as a filter.

While ranking nodes in the SP scheme is straightforward, we need a different ranking
mechanism for the LP scheme. Note that the only parameter of the LP classification
scheme is the number of iterations Tmax. In particular, by choosing different Tmax one
effectively controls the number of labeled instances. Hence, setting Tmax is in a sense
analogous to setting a classification threshold for the SP mechanism. This suggests
the following natural criterion for ranking: Rank the nodes according to the iteration
time step when they were labeled as type A, so that a node that is labeled earlier in the
iteration has a lower rank (i.e., is more likely to belong to the class A). The justification
of this approach is again based on the homophily condition: nodes that are similar to
the initially labeled nodes will tend to be better connected with them, hence they will
be labeled earlier in the iteration.

4 Related Work

Before presenting our experimental results, we would like to clarify the connection of
the models in Section 3 with some existing work. The score propagation model in Equa-
tion 2 is a special case of the suspicion scoring model of Macskassy and Provost [9].
One subtle difference is that Ref. [9] uses annealing to guarantee convergence, by

Empirical Comparison of “Hard” and “Soft” Label Propagation 103

decreasing α with time. Another aspect of the work in [9] is an adaptive data access
based on iterative runs of the scoring scheme. Specifically, after a first run of the SP
scheme, they choose the top K nodes, query them against a secondary database, and
augment the network with new links. Then they run the SP scheme again to gener-
ate new rankings. Since in our model the relational graph is given initially, we do not
perform iterations over many SP schemes. We note, however, that our LP algorithm is
analogous to performing multiple iterations over the score propagation scheme, where
each SP run includes only one iteration of the Equation 2.

Recently there has been a growing interest in the information retrieval commu-
nity in using both link and content information for web queries [12]. The SP model
is strongly related to the relevance propagation models for the web-based informa-
tion retrieval [3,10]. One of the differences is that our model does not have the self–
relevance term that describes a node’s content. Also, the graph in our model is undi-
rected, while in the web mining applications the link directionality plays an important
role (see also [13]).

The classification problem considered here is related to semi-supervised learning
with partially labeled data. Recently, several algorithms that combine both labeled and
unlabeled data have been suggested [11,14,15]. Remarkably, these approaches too are
based on the assumption that nearby data points are likely to belong to the same class.
Given a dataset with partially labeled examples, Zhu and Ghahramani [15] construct a
fully connected graph so that the weight of the link between two data points x1 and x2
depends on the distance d(x1, x2). They then suggest a “soft” label propagation scheme
where the information about the labeled nodes is propagated throughout the constructed
graph. Thanks to the problem formulation, they were able to avoid the actual propaga-
tion step and instead solve a linear system of equations to obtain the class–membership
probabilities. Despite obvious similarities, there are also important differences with the
model considered here. First of all, the scores in our model are not interpretable as prob-
abilities. Also, the algorithm in Ref [15] works only if there are initially labeled data
points from both classes (for binary classification), while in our case we do not have
that constraint, and need only positive examples.

5 Experiments with Synthetic Data

We evaluated the algorithms using ROC analysis, and particularly, AUC (Area Under
the Curve) scores. In our experiments with synthetic data, we used equal class sizes
NA = NB = 500 in one of the experiments, and skewed class distribution with
NA = 200 and NB = 2000 in all the others. We run 100 trials for each choice of
the parameters, and calculated both the average and the standard deviation of the AUC
scores over the trials.

5.1 Class Overlap

In the first set of experiments, we examine the effect of the class overlap on the clas-
sification accuracy. As we already mentioned, the class overlap can be measured by
the ratio zout/zin. In Figure 2 we plot the AUC score against the ratio zout/zin for

104 A. Galstyan and P.R. Cohen

three different values of zin. The top panel shows the results for equal class sizes,
NA = NB = 500, with the number of initially labeled instances N0

A = 100, e.g., 20%
of all A nodes. Starting from a near-perfect AUC scores at the ratio 0.1 for zin = 5 , the
accuracies of both SP and LP degrade gradually with increasing the ratio zout/zin.
Specifically, for zin ≈ zout the AUC scores falls to 0.5, which corresponds to randomly
generated ranking. We also note that there is a crossover region in the performances of
the algorithms: at zout/zin = 0.1, LP attains slightly higher AUC score than SP, while
for zout/zin ≥ 0.5 the SP algorithm performs better. This pattern is amplified for larger
within–class connectivities. Indeed, for zin = 20 both algorithms attain near–perfect
AUC scores for ratios up to 0.3, and for zout/zin > 0.3, LP clearly outperforms SP
up until the crossover point at 0.7, with the difference in the AUC scores as high as 0.1
at certain points. More interestingly, the crossover point shifts to right with increasing
the within-class link density. This suggests that for sufficiently dense graphs, LP is a
better choice if the class overlap is not very large. For sparse graphs and relatively large
overlap, however, SP performs better.

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

z
out

/z
in

A
U

C
 s

co
re

zin = 20

SP
LP

Fig. 2. AUC score vs the ratio zout/zin for different values of zin. The top and bottom panels are
for equal and skewed class distributions respectively.

A similar picture holds in the presence of a class skew (bottom panel in Fig. 2). The
number of nodes in each class is NA = 200 and NB = 2000, with 20% of A nodes
initially labeled (i.e., N0

A = 40). The only difference from the previous case is that
the ratio at which the performances of both algorithms fall to the random level is now
shifted towards the higher values of zout (note that the horizontal axis ranges from 1 to
10). The reason for this is as follows: For a given zout, each type B node is connected
with zba = zoutNA/NB type A nodes in average. One should expect the ranking to be
random when a B node has roughly the same number of A neighbors as an A node.
Thus, the corresponding zout can be estimated from zout/zin ∼ NB/NA. For the class
skew of 10, this estimate yields zout/zin ∼ 10, which agrees well with the experiment.

Empirical Comparison of “Hard” and “Soft” Label Propagation 105

5.2 ROC Analysis

We now present the ROC analysis of the algorithms, for a fixed within–class connec-
tivity zin = 5, and three different choices of the class overlap zout = {5, 10, 15}.
For zout = 5, LP achieves a slightly better AUC score than SP. For zout = 10 both
algorithms have the same AUC score (within the standard deviation). And finally, for
zout = 15 SP has a better AUC score (see the bottom panel inFig. 2). In the experi-
ments, we used bins of size 0.01 for the false positive rate (FP), and for each bin we
calculated the average and standard deviation of the corresponding true positive rate
(TP). The results are shown in Fig. 3.

We first discuss the case zout = 5. The corresponding AUC scores are 0.95 ± 0.01
for SP and 0.97 ± 0.01 for LP. What is remarkable, however, is that despite this tiny
difference, the two classifiers are quite distinct for small false positive rates. In other
words, the difference in the AUC scores is not distributed equally over the whole ROC
plane. Instead, the main difference is for the false positive range 0 < FP < 0.1. For
FP > 0.3, on the other hand, SP achieves marginally better true positive rates. This
observation suggests that if the cost of false positives are high, then LP is a superior
choice for small class overlap. This can be especially important in the case of a highly
skewed class distribution, where even tiny false positive rates will translate into a large
number of falsely classified instances. The inset shows the difference between true pos-
itive rates, ΔTP = TPLP − TPSP , as a function of FP . The bars in the plot are two

Fig. 3. ROC curves for different connectivities

106 A. Galstyan and P.R. Cohen

standard deviations wide and centered around the mean. Clearly, for a small interval
around FP = 0.05, this difference is positive and statistically significant, and achieves
a value as high as ∼ 0.3.

A somewhat similar, although less dramatic, effect holds for zout = 10, when the
AUC scores of both algorithms are virtually indistinguishable. In this case, LP achieves
better true positive rates in the range 0 < FP < 0.2, while SP performs better on the
rest of the axis. The difference between them is not as pronounced as in the previous
case, and the corresponding standard deviations are higher. Finally, for zout = 15 the
SP algorithm matches the performance of LP for small positive rates, and outperforms
the latter over the rest of the FP axis. This again suggests that for relatively large class
overlap SP is a better choice. Followup experiments revealed that the observed differ-
ences in ROC curves, especially for small false positive rates, persist for a wide range of
parameters, as long as the overlap between the classes is not very large. Moreover, the
difference becomes more dramatic for larger within-class connectivities zin. For some
parameters this difference was as high as 0.5 for small FP rates.

5.3 Effect of Noise

Next, we study how the classification accuracy deteriorates in the presence of noise,
which was introduced by randomly and uniformly choosing N0

B nodes from the class
B and mislabeling them as type A initially. In the experiments, we set the number of
initially labeled A nodes to N0

A = 40, and studied how the AUC score changed as
we increased the number of mislabeled nodes, N0

B . The results are presented in Fig. 4,
where we plot the AUC score against the ratio N0

B/N0
A for three different values of the

class overlap. Remarkably, for a small class overlap, zout = 10, the noise has distinctly
different effects on SP and LP. The LP algorithm seems to be very resilient to the noise
and has an AUC score close to ∼ 0.97 even when the number of mislabeled nodes is
N0

B = 200, or five times the number of correctly labeled nodes. The performance of the
SP algorithm, on the other hand, deteriorates steadily starting from moderate values of
noise and attains an AUC score of only 0.68 for N0

B = 200. A similar, although weaker,
effect is observed for moderate overlap zout = 20. The AUC score of the SP algorithm
decreases almost linearly, while for the LP algorithm the decrease is much slower. Fi-
nally, for zout = 30 the noise seems to affect the performance of both algorithms very
similarly.

6 Experiments with the CoRA Data

The assumption that the relational structure is described by coupled Erdos-Renyi graphs
might not be appropriate for real world datasets. Hence, it is important to find out
whether the results described in the previous sections hold for more realistic data. In
this section we present our experiments on the CoRA data–set of hierarchically cate-
gorized computer science research papers [16]. We focus on the papers in the Machine
Learning category, which contains seven different subtopics: “Case-Based”, “Genetic
Algorithms”, “Probabilistic Methods”, “Neural Networks”, “Reinforcement Learning”,
“Rule Learning” , and “Theory”. Two papers were linked together by using common

Empirical Comparison of “Hard” and “Soft” Label Propagation 107

Fig. 4. The AUC score plotted against the ratio N0
B/N0

A. The within–class connectivity is
zin = 10.

author (or authors) and citation. After pruning out isolated papers from the data–set,
we were left with 4025 unique titles. In our experiments, we mapped the multi–class
problem onto a binary classification problem for each individual topic.

Generally speaking, the results obtained for the CoRA data were somewhat different
from the results for the synthetic data. Specifically, we found that the ranking accura-
cies were lower than one would expect for a random Erdos–Renyi topology with cor-
responding connectivities, especially for the LP algorithm. We believe that this is due
to the fact that the CoRA graph has a much more skewed degree distribution compared
to the exponential distribution of Erdos–Renyi graphs (indeed, we established that the
performances of both algorithms improve if we purge nodes with very high and very
low connectivities from the graph). We also found that in contrast to the synthetic data,
the SP algorithm was usually better than LP in case when there was no noise in the
initial label assignment.

Despite these differences, however, we established that our main results for the syn-
thetic data also hold for some of the CoRA topics. In particular, we observed that for
four out of the seven topics the LP algorithm is indeed less sensitive to noise. This is
shown in Figure 5 where we plot the AUC score against the fraction of the mislabeled
nodes for six of the topics. For the topics “Genetic Algorithms”, “Reinforcement Learn-
ing”, “Rule Learning” , and “Theory”, the decrease in the accuracy for the LP algorithm
is smaller than for the SP algorithm, although the difference is not as dramatic as in

108 A. Galstyan and P.R. Cohen

Fig. 5. The AUC score plotted against the ratio N0
B/N0

A for different CoRA topics

the case of the synthetic data. For two other topics, “Case-Based” and “Probabilistic
Methods”, as well as for the “Neural Networks” topic not shown here, both algorithms
responded similarly to the noise.

Furthermore, in Figure 6 we show the ROC curves for the same topics. Again, for
some of the topics the observed picture is qualitatively very similar to that presented in
Figure 3 for the synthetic data. Namely, although the AUC scores of both algorithms
are very close, their ROC curves are different, with LP achieving better accuracy for
smaller false positive rates. This is especially evident for the “Reinforcement Learning”
topic for which the (average) maximum difference is close to 0.18. Note also that for

Empirical Comparison of “Hard” and “Soft” Label Propagation 109

Fig. 6. ROC curve for different CoRA topics

the “Case-Based” and the “Probabilistic Methods” topics SP outperforms LP for the
whole ROC plane (this is also true for the “Neural Networks” topic, not shown here).

7 Discussion and Future Work

We have presented empirical comparison of hard and soft label propagation techniques
for binary classification in relational data. Our results suggest that for sufficiently strong
homophily of the linked data, both methods achieve a remarkably good ranking accu-
racy. We also found that, while neither of the approaches dominates over the entire range

110 A. Galstyan and P.R. Cohen

of parameters, there are some important differences that should be taken into account
for deciding which one is better suited for a particular problem.

One of the main findings of our paper is that even when two algorithms achieve
the same accuracy of ranking (as characterized by their AUC scores), the behavior of
the family of classifiers based on them can be drastically different. Specifically, we
found that for small values of allowed false positive rates, LP usually achieves higher
true positive rates. In fact, for data with small class overlap, the observed difference
was quite dramatic. The SP algorithm, on the other hand, achieves higher true positive
rates for larger allowed false positive rate. This suggests that SP might be a better choice
only when the cost of false negatives strongly outweighs the cost of false positives. This
difference will be especially important in the case of highly skewed class distributions,
where even tiny false positive rates translate into a large number of falsely classified
instances.

The other important finding is the different behavior of the two propagation schemes
in the presence of noise. Our experiments with synthetic data, as well as for some of the
CoRA topics, suggest that the LP algorithm is more robust to the presence of mislabeled
data instances. Thus, propagating hard labels instead of scores might be a better choice
if the prior information is noisy. We believe that this is an interesting observation that
warrants a further examination, both analytically and empirically.

We also note that the algorithms have different computational complexities. Indeed,
the worst case time–complexity of the LP algorithm scales linearly with the number of
data instances, as it might require N iterations to rank N instances. This correspond to
the case when only one node is labeled at each iteration step. The SP algorithm, on the
other hand, scales much better with the data size. In fact, our experiments show that the
relative ranking almost saturates once the influence propagates from the seed nodes to
the rest of the nodes, which happens after a much shorter time scale (order of ∼ log N).
This difference can be very important for very large scale data.

Many relational classification techniques rely on information propagation over
graphs. However, there are not many systematic studies that examine the role of the
graph structure on the propagation dynamics. We have addressed this problem for fairly
simple propagation dynamics and a graph topology. We believe it would be worthwhile
to perform similar studies for more sophisticated classification schemes, and extend the
empirical framework presented here to more complex relational domains. Currently,
evaluations of various relational learning algorithms are limited to a handful of real
world datasets. While it is important to perform well on real world data, we believe that
evaluating algorithms through a controlled set of experiments on synthetic data will
help to better understand their strengths and weaknesses.

References

1. Chakrabarti, S., Dom, B.E., Indyk, P.: Enhanced hypertext categorization using hyperlinks.
In: Haas, L.M., Tiwary, A. (eds.) Proceedings of SIGMOD-1998, ACM International Con-
ference on Management of Data, Seattle, US, pp. 307–318. ACM Press, New York (1998)

2. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
Proceedings of the IJCAI-1999, pp. 1300–1309 (1999)

Empirical Comparison of “Hard” and “Soft” Label Propagation 111

3. Qin, T., Liu, T.Y., Zhang, X.D., Chen, Z., Ma, W.Y.: A study of relevance propagation for web
search. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 408–415. ACM Press, New York
(2005)

4. Galstyan, A., Cohen, P.R.: Inferring useful heuristics from the dynamics of iterative relational
classifiers. In: Proceedings of IJCAI-2005, 19th International Joint Conference on Artificial
Intelligence (2005)

5. Galstyan, A., Cohen, P.R.: Relational classification through three–state epidemic dynamics.
In: Proceedings of the 9th International Conference on Information Fusion, Florence, Italy
(2006)

6. Macskassy, S., Provost, F.: A simple relational classifier. In: Proceeding of the Workshop on
Multi-Relational Data Mining in conjunction with KDD-2003 (MRDM-2003), Washington,
DC (2003)

7. Macskassy, S., Provost, F.: Classification in networked data: A toolkit and a univariate case
study. In: Working paper CeDER-04-08, Stern School of Business, New York University
(2004)

8. Macskassy, S., Provost, F.: Netkit-srl: A toolkit for network learning and inference. In: Pro-
ceeding of the NAACSOS Conference (2005)

9. Macskassy, S., Provost, F.: Suspicion scoring based on guilt-by-association, collective infer-
ence, and focused data access. In: Proceeding of the International Conference on Intelligence
Analysis, McLean, VA (2005)

10. Shakery, A., Zhai, C.: Relevance propagation for topic distillation uiuc trec 2003 web track
experiments. In: TREC, pp. 673–677 (2003)

11. Szummer, M., Jaakkola, T.: Partially labeled classification with markov random walks. In:
Advances in Neural Information Processing Systems, vol. 14 (2001)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford Digital Library Technologies Project (1998)

13. Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In: Pro-
ceedings of the 30th VLDB Conference (2004)

14. Tishby, N., Slonim, N.: Data clustering by markovian relaxation and the information bottle-
neck method. In: NIPS, pp. 640–646 (2000)

15. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation.
Technical report, Carnegie Mellon University (2002)

16. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet
portals with machine learning. Information Retrieval Journal 3, 127–163 (2000)

A Phase Transition-Based Perspective on

Multiple Instance Kernels

Romaric Gaudel1,2, Michèle Sebag1, and Antoine Cornuéjols3

1 CNRS − INRIA − Univ. Paris-Sud, F-91405 Orsay, France
{romaric.gaudel, michele.sebag}@lri.fr

2 École Normale Supérieure de Cachan
3 AgroParisTech − INRA, F-75005 Paris, France

antoine.cornuejols@agroparistech.fr

Abstract. This paper is concerned with Relational Support Vector Ma-
chines, at the intersection of Support Vector Machines (SVM) and In-
ductive Logic Programming or Relational Learning. The so-called phase
transition framework, originally developed for constraint satisfaction
problems, has been extended to relational learning and it has provided
relevant insights into the limitations and difficulties thereof. The goal of
this paper is to examine relational SVMs and specifically Multiple In-
stance (MI) Kernels along the phase transition framework. A relaxation
of the MI-SVM problem formalized as a linear programming problem
(LPP) is defined and we show that the LPP satisfiability rate induces a
lower bound on the MI-SVM generalization error. An extensive experi-
mental study shows the existence of a critical region, where both LPP
unsatisfiability and MI-SVM error rates are high. An interpretation for
these results is proposed.

Keywords: Phase Transition, Multiple Instance Problems, Relational
Learning, Relational Kernels, Support Vector Machines.

1 Introduction

This paper is concerned with Relational Support Vector Machines, at the inter-
section of Support Vector Machines (SVM) [20] and Inductive Logic Program-
ming or Relational Learning [18]. After the so-called kernel trick, the extension
of SVMs to relational representations relies on the design of specific kernels (see
[8,10] among many others). Relational kernels thus achieve a particular type of
propositionalization [14], mapping every relational example onto a propositional
space defined after the training examples. However, relational representations in-
trinsically embed combinatorial issues; for instance the Plotkin’s θ-subsumption
test used as relational covering test is equivalent to a Constraint Satisfaction
Problem (CSP) [11]. The fact that relational learning involves the resolution of
CSPs as a core routine has far-fetched consequences besides exponential (worst-
case) complexity, referred to as the Phase Transition (PT) paradigm (more on
this in section 2).

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 112–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Phase Transition-Based Perspective on Multiple Instance Kernels 113

The question investigated in this paper is whether relational SVMs overcome
the limitations of relational learners related to the PT [3]. Specifically, the study
focuses on the Multiple Instance (MI) setting [9], for which several SVM ap-
proaches have been proposed [10,8,16,15]. This paper presents two contributions.
Firstly, a relaxation of the MI-SVM problem is introduced and formalized as a
Linear Programming Problem (LPP); we show that the LPP satisfiability rate
derives a lower bound on the generalization error of the MI-SVM. Secondly, a
principled experimental study is conducted, based on a set of order parameters;
these experiments show the existence of a critical region, conditioned by the
value of order parameters, where both LPP unsatisfiability and MI-SVM error
rates are high.

The paper is organized as follows. For the sake of self-containedness, the Phase
Transition framework is briefly introduced in Section 2 together with the Mul-
tiple Instance setting. Section 3 defines a relaxed formalization of the MI-SVM
expressed as a LPP, and establishes a relation between the MI-SVM generaliza-
tion error and the LPP satisfiability rate. Section 4 reports on the experimental
study and discusses the results. The paper concludes with some perspectives for
further research.

2 State of the Art

It is widely acknowledged that there is a huge gap between the empirical and the
worst case complexity analysis for CSPs [4]. This remark led to developing the so-
called phase transition paradigm (PT) [12], which considers the satisfiability and
the resolution complexity of CSP instances as random variables depending on
order parameters of the problem instance (e.g. constraint density and tightness).

The phase transition paradigm has been transported to relational machine
learning and inductive logic programming (ILP) by [11], and was shown to be
instrumental in discovering and analyzing some limitations of relational learning
[3] or grammatical inference [19] algorithms, such as the existence of a failure
region for existing relational learners [3].

Resuming the above studies, this paper investigates the PT phenomenon in
the Multiple Instance Learning setting introduced by Dietterich et al. [9], which
is viewed as intermediate between relational and propositional settings. Formally,
a MI example x is a bag of (propositional) instances noted x(1), . . ., x(N).

In the original MI setting, referred to in the following as linear, an example
is labelled positive iff it includes at least one instance satisfying some target
concept C:

pos(x) iff ∃ i ∈ 1 . . .N s.t. C(x(i))

However, in some contexts such as image categorization, [5] pointed out that
the example label might depend on the properties of several instances; along
the same lines, several alternative formalizations were proposed by [21] and the
remainder of the paper will consider the so-called presence-based setting, with:

pos(x) iff ∀ j = 1 . . .m, ∃ ij ∈ 1 . . .N s.t. Cj(x(ij))

114 R. Gaudel, M. Sebag, and A. Cornuéjols

Many approaches have been developed to address MI problems, including
specific algorithms focussing on linear MI [17,22], relational algorithms [6,2],
and specific Support Vector Machine (SVM) approaches [10,8,16,15]. Assuming
the reader’s familiarity with SVMs [20] and restricting ourselves to standard bag
kernels in this paper, MI-kernels K are constructed on the top of propositional
kernels k. Formally, letting x = (x(1), . . . x(N)) and x′ = (x′ (1), . . . x′ (N ′)) denote
two examples, standard MI-kernels are defined as:

K(x,x′) = f(x).f(x′)
N∑

k=1

N ′∑
�=1

k(x(k), x′ (�)) (1)

where f(x) corresponds to a normalization term, e.g. f(x) = 1 or 1/N or
1/

√
K(x,x).

MI-SVMs have obtained good results on linear MI problems [10], and also in
application domains which rather belong to the presence-based setting, such as
image categorization [15] or chemometry [16].

Still, by construction standard MI-kernels consider the average similarity
among the example instances. The question examined in this paper is to which
extent this average information is sufficient to reconstruct existential concepts
involved in presence-based MI problems.

3 Overview

This section introduces a relaxation of MI-SVM problems in terms of Linear
Programming problems, which will be exploited to analyze MI-SVM along the
phase transition framework.

3.1 When MI Learning Meets Linear Programming

In order to investigate the performance of an algorithm within the PT frame-
work, a standard procedure is to generate artificial problems after the selected
order parameters (see below), where each problem is made of a training set
L = {(x1, y1), . . . , (x�, y�)} and a test set T = {(x′

1, y
′
1), . . . , (x′

t, y
′
t)}, and to

compute the error on the test set of the hypothesis learned from the training
set. The test error, averaged over a sample of artificial problems generated after
some order parameter values, indeed measures the competence of the algorithm
conditionally to these parameter values [3].

A different approach is followed in the present paper, for the following reason.
Our goal is to examine how kernel tricks can be used to alleviate the specific
difficulties of relational learning; in relational terms, the question is about the
quality of the propositionalization achieved through relational kernels. In other
words, the focus is on the competence of the representation (the capacity of
the hypothesis search space defined after the MI kernel) as opposed to, the
competence of a particular algorithm (the average quality of the hypotheses
learned by this algorithm in this search space).

A Phase Transition-Based Perspective on Multiple Instance Kernels 115

Accordingly, while the proposed methodology is still based on the generation
of artificial problems, it focuses on the kernel-based propositionalization of the
MI examples. Formally, to each training set L is associated the propositional
representation RL, characterizing every MI example x as the �-dimensional real-
valued vector defined as ΨL(x) = (K(x1,x), . . . , K(x�,x)).

By construction [20], any MI-SVM hypothesis h is expressed as a linear hy-
pothesis in RL, h(x) =

∑�
i=1 αi.yi.K(xi,x) + β, subject to � inequality con-

straints:
∀i = 1 . . . � αi ≥ 0 (2)

Let T denote a t-example dataset propositionalized after RL; the existence of a
separating hyperplane for T is formalized as a set of t inequality constraints:

∀j = 1 . . . t y′
j .h(x′

j) = y′
j.

⎛
⎝ N∑

i=1

αi.yi.K(xi,x′
j) + β

⎞
⎠ ≥ 1 (3)

Let Q(L, T) be defined as the set of inequality constraints (2) and (3). Q(L, T)
admits a solution iff the MI-SVM propositionalization defined from L has the
capacity to separate the examples in T . Note that the linear programming
problem1 (LPP) Q(L, T) is much easier than the standard learning problem of
whether the hypothesis actually learned from L will correctly classify T . Q(L, T)
is an easier problem as it explicitly exploits the labels of the test examples (i.e.,
cheats) in order to find the � + 1 coefficients αi and β; further, it can select a
posteriori some of the SVM hyper-parameters, e.g. the error cost C.

The central argument of the paper is: Q(L, T) gives deep insights into the
quality of the propositionalization based on the kernel trick. Formally we show
that the probability for Q(L, T) to admit a solution, referred to as LPP satisfi-
ability rate, induces a lower bound on the MI-SVM generalization error.

Proposition
Within a MI-SVM setting, let L be a training set of size �, RL the associated
kernel-based propositionalization, and pL the generalization error of the optimal
linear classifier h∗

L defined on RL. Let IE�[pL] denote the expectation of pL con-
ditionally to |L| = �.

Let a MI-SVM problem be defined as a pair of example sets (L, T). Con-
sidering a sequence of R independent MI-SVM problems (Li, Ti) such that the
size of Li (respectively Ti) is � (resp. t), let εR(�, t) denote the fraction of LPPs
Q(Li, Ti) that are satisfiable. Then for any η > 0, with probability at least
1 − exp(−2η2 R),

IE�[pL] ≥ 1 − (εR(�, t) + η)
1
t . (4)

Proof
Given L, h∗

L and pL as above, the probability for a t example set T to include
no example misclassified by h∗

L is (1 − pL)t.
1 Actually, this problem should rather be viewed as a constraint satisfaction problem

on continuous variables, as it does not involve any optimization objective; the only
point is whether the set of linear inequalities admits a solution.

116 R. Gaudel, M. Sebag, and A. Cornuéjols

It is straightforward to see that if T does not contain examples that are misclas-
sified by h∗

L, Q(L, T) is satisfiable. Therefore the probability for Q(L, T) to be
satisfiable conditionally to L is greater than (1 − pL)t :

IE|T |=t[Q(L, T) satisfiable] ≥ (1 − pL)t

Taking the expectation of the above w.r.t. |L| = �, it comes:

IE|T |=t, |L|=�[Q(L, T) satisfiable] ≥ IE|L|=�[(1 − pL)t] ≥ (1 − IE�[pL])t (5)

where the right inequality follows from Jensen’s inequality. Next step is to bound
the left term from its empirical estimate εR(�, t), using Hoeffding’s bound. With
probability at least 1 − exp(−2η2R),

IE|T |=t, |L|=�[Q(L, T) satisfiable] < εR(�, t) + η (6)

From (5) and (6) it comes that with probability at least 1 − exp(−2η2R)

(1 − IE�[pL])t ≤ εR(�, t) + η

which concludes the proof. �

This theoretical result allows us to draw conclusions about the quality (general-
ization error) of the MI-SVM framework, based on the experimental satisfiability
rate of the linear programming problem Q(L, T).

3.2 Order Parameters and Experimental Setting

The satisfiability of Q(L, T) is systematically investigated following the PT par-
adigm [3], based on the definition of order parameters. These order parameters,
summarized in Table 1 together with their range of variation in the experiments,
intend to characterize the key complexity factors in a MI-SVM problem, related
to the instances, the examples, and the target concept.

Table 1. Order parameters for the MI LPP, and range of variation in the experiments

d Dimension of the instance space X = [0, 1]d 30

m Number of sub-concepts in the target concept 30

ε Coverage of a sub-concept = εd .15

� Number of training examples 60 (30 +, 30 −)
t Number of test examples 200 (100 +, 100 −)

N, N ′ Number of instances in pos./neg. example 100
n Number of relevant instances per positive example 30. . .100
n′ Number of relevant instances per negative example 0. . .100
nm Number of sub-concepts not satisfied by neg. examples 10,20,25

Instance space X is set to [0, 1]d; unless specified otherwise, any instance x is
uniformly drawn in X . We denote Bε(x) the ε-radius ball centered on x w.r.t. L∞

A Phase Transition-Based Perspective on Multiple Instance Kernels 117

norm. The target concept involves m sub-concepts Ci ; Ci(x) holds iff x belongs
to Bε(zi), where zi is a uniformly drawn instance. For m > 1 (resp. m = 1) such
a target concept follows the presence-based (resp. linear) MI setting (section 2),
Positive (respectively negative) examples include N (resp. N ′) instances. An
instance is said to be relevant if it satisfies some sub-concept. An example is said
to satisfy a sub-concept if it includes an instance satisfying this sub-concept.
Positive (respectively negative) examples involve n (resp. n′) relevant instances.
Any negative example fails to satisfy exactly nm (for near-miss) sub-concepts.
Naturally, n ≥ m and nm ≥ 1.

For each order parameter setting, 40 pairs (training set L, test set T) are built,
made of an equal number of positive and negative iid examples; each example
involves the required number of relevant instances, uniformly drawn in some
Bε(zi), and other instances uniformly drawn in X , conditionally to parameters
N and n for positive examples (resp., N ′, n′ and nm for negative examples). Set
T is propositionalized after RL, using Gaussian instance kernels with parameter
σ = 1; the bag kernel uses the number of example instances as normalising
function (eq. 1).

3.3 Goal of the Experiments

The paper goal is to see whether the MI-SVM framework overcomes the specific
difficulties of relational learning, and whether a phase transition phenomenon
occurs. The first goal of the experiments is to assess the satisfiability of the
LPP; it is expected that the problem is satisfiable, i.e. positive and negative test
examples can be discriminated, as far as their number of relevant instances are
sufficiently different (n <> n′); the question thus is whether the diagonal region
n = n′ is a critical region, and if it is the case, what its width is. This goal is
achieved by measuring the LPP satisfiability, averaged over 40 problems (Li, Ti)
independently generated for each order parameter setting.

The second goal is to assess the actual relation between the LPP satisfiability
and the MI-SVM generalization error, in other words the relevance of the pro-
posed approach. Indeed the lower bound on the MI-SVM generalization error
based on the satisfiability does not say much as only R = 40 problems are con-
sidered per order parameter setting for computational feasibility. It thus remains
to see whether the critical LPP region is also critical from a MI-SVM point of
view, i.e. if it is a region where the standard test error is high too. This goal
is classically achieved by learning a MI-SVM hypothesis from Li, measuring its
error on Ti, and averaging the test error over all problems generated for each
order parameter setting.

4 Experiments

This section reports on the extensive experimental study conducted after the
order parameters (Table 1). In total, 30,000 artificial MI-SVM problems have
been considered. Let us first summarize the lessons learned before detailing and
discussing the results.

118 R. Gaudel, M. Sebag, and A. Cornuéjols

4.1 Summary of the Results

Firstly, the existence of an unsatisfiable region is experimentally demonstrated
(Fig. 1). As expected, the unsatisfiable region corresponds to “truly relational”
problems, e.g. when no distinction can be made between positive and negative
examples based on their number of relevant instances (n′ = n). Surprisingly, the
width of the unsatisfiable region increases as parameter nm increases, i.e. when
few sub-concepts are satisfied by a negative example. An interpretation for these
findings is proposed in section 4.2.

Secondly, the unsatisfiable region is also a critical region from a MI-SVM
learning viewpoint, which confirms the practical relevance of the lower bound
established in section 3.1. The learning accuracy decreases smoothly but signifi-
cantly while the satisfiability rate abruptly goes to 0 (Fig. 3); in the unsatisfiable
region, the average test error is circa 40%.

4.2 LPP Satisfiability Landscape

Each LPP has been solved using the GGLPK package, with an average resolution
cost of 16 seconds (on PC Pentium IV, 3.0 Ghz).

The average satisfiability computed for each order parameter setting mostly
depends on the number n and n′ of relevant instances in positive and negative
examples. For the sake of readability, the satisfiability is thus graphically dis-
played in the (n, n′) plane; the color of pixel (x, y) is black (respectively white)
if all LPP with (n = x, n′ = y) are unsatisfiable (resp. satisfiable). Fig. 1 shows
the unsatisfiable black region, centered on the diagonal n = n′.

 0
 0.2
 0.4
 0.6
 0.8
 1

n

’n

 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

(a) nm = 10

 0
 0.2
 0.4
 0.6
 0.8
 1

n

’n

 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

(b) nm = 20

 0
 0.2
 0.4
 0.6
 0.8
 1

n

’n

 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

(c) nm = 25

Fig. 1. LPP satisfiability versus n and n′, averaged over 40 runs, for various values of
the number nm of sub-concepts not satisfied by a negative example. All other order
parameter values are as in Table 1.

These results are explained from the distribution of the examples in the kernel-
based propositional space. Fig. 2 illustrates this distribution in a propositional-
ized plane where the two attributes are derived from a positive and a negative
training example. Let the instance kernel be the Gaussian kernel2. Let k̄C and
k̄U respectively denote the expectation of k(x, x′) for two instances satisfying the
2 The interpretation only considers the Gaussian case; however complementary exper-

iments done with polynomial kernels lead to similar LPP unsatisfiability landscape.

A Phase Transition-Based Perspective on Multiple Instance Kernels 119

0 20 40 60 80 100 120
0

20

40

60

80

100

120

K(Xpos,X)

K
(X

ne
g,

X
)

Positive example

Negative example

Fig. 2. Distribution of kernel-based propositionalized examples (legend + for positive,
× for negative), with n = 50, n′ = 30, nm = 10. First (second) coordinate corresponds
to K(x, ·) with x a positive (negative) training example.

same sub-concept C (resp., uniformly drawn). Considering MI examples (x, y)
and (x′, y′), the expectation of K(x,x′) is thus analytically derived:

IE[K(x,x′)] =

⎧⎨
⎩

1
m (n

N)2(k̄C − k̄U) + k̄U if y = y′ = 1
1
m (n′

N ′)2(k̄C − k̄U) + k̄U if y = y′ = −1
1
m

n
N

n′

N ′ (k̄C − k̄U) + k̄C if y �= y′

Therefore in the neighborhood of the diagonal region3 n = n′, the distribu-
tion of the propositionalized examples hardly depends on their class, adversely
affecting the discrimination task.

The fact that the width of the unsatisfiable region increases with the number
nm of sub-concepts that are not satisfied by negative examples can be explained
along the same lines. As nm increases, so does the variance of the distribution
of the propositionalized negative examples, thus increasing the overlap between
the distribution of positive and negative examples.

4.3 Generalization Error Landscape

As already mentioned, the lower bound given in section 3.1 is poorly informative
with respect to the generalization error; an unsatisfiability rate of 100 % over
40 problems only allows us to conclude that the generalization error is greater
than 0.8 % with confidence 95%. To estimate the tightness of the bound, the
actual generalization error was thus estimated empirically by learning from the
training set and measuring the error on the test set, averaged over all problems
generated for each order parameter setting. Each MI-SVM problem was solved
using SVMTorch [7] with an average computational cost of 25 seconds (on PC
Pentium IV, 3.0 Ghz). For the sake of readability, the error is graphically dis-
played in the (n, n′) plane; the color of pixel (x, y) depicts the average error for

3 Actually, the unsatisfiable region corresponds to n
N

= n′

N′ . For simplicity, the dis-
tinction is omitted in the paper as N = N ′.

120 R. Gaudel, M. Sebag, and A. Cornuéjols

 0
 0.1
 0.2
 0.3
 0.4
 0.5

n

n’

 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

(a) C = 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5

n

n’

 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

(b) C = 1,000,000
.

Fig. 3. Generalization error of MI-SVM in the (n, n′) plane, estimated from SVMTorch
test error averaged on 40 problems, for cost error C = 102 and 106

(n = x, n′ = y); a white pixel stands for no error while a black pixel stands for
50% error (same as random guessing).

Indeed the SVMTorch parameters were not optimized for each problem. Still,
experiments done with the cost error C ranging in 10, . . . , 106 lead to the same
general picture, and confirm that the MI-SVM error increases with the LPP
unsatisfiability (Fig. 3). While the unsatisfiability rate abruptly goes to 100%,
the error rate increases more gently, but significantly; when the unsatisfiability
is above 80% the average test error is above 30%.

5 Conclusion and Perspectives

The contribution of the paper is twofold. Firstly, a relaxed formalization of
kernel-based learning in terms of linear programming has been defined, and it
has been shown that the LPP satisfiability rate induces a lower bound on the
generalization error. Contrasting with the mainstream asymptotic framework
[20], the presented analysis is relevant for small size datasets, which makes sense
indeed in application domains such as chemometry [16].

Secondly, the LPP framework has been used to demonstrate the existence
of a phase transition phenomenon for standard MI-SVM kernels; further, the
LPP unsatisfiable region corresponds to a critical region from a MI-SVM learn-
ing standpoint, where the test error is consistently greater than 30% after an
extensive empirical study on artificial problems.

Further research will consider more sophisticated MI-SVM approaches [1,8],
and see whether they also present a phase transition phenomenon in relation
with the specific difficulties of presence-based MI learning. Another direction
perspective is to further investigate the LPP framework, using the satisfiability
rate as a criterion for kernel selection, or active learning.

Acknowledgments

The authors thank Olivier Teytaud for fruitful discussions, and gratefully ac-
knowledge the support of the Network of Excellence PASCAL, IST-2002-506778.

A Phase Transition-Based Perspective on Multiple Instance Kernels 121

References

1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support Vector Machines for
Multiple-Instance Learning. In: NIPS Proc. of 15th, pp. 561–568 (2002)

2. Blockeel, H., Page, D., Srinivasan, A.: Multi-Instance Tree Learning. In: ICML,
pp. 57–64 (2005)

3. Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational Learning as Search in a
Critical Region. Journal of Machine Learning Research 4, 431–463 (2003)

4. Cheeseman, P., Kanefsky, B., Taylor, W.: Where the Really Hard Problems are.
In: IJCAI, pp. 331–337 (1991)

5. Chen, Y., Wang, J.Z.: Image Categorization by Learning and Reasoning with Re-
gions. Journal of Machine Learning Research 5, 913–939 (2004)

6. Chevaleyre, Y., Zucker, J.-D.: Solving Multiple-Instance and Multiple-Part Learn-
ing Problems with Decision Trees and Rule Sets. Application to the Mutagenesis
Problem. In: Canadian Conference on Artificial Intelligence, pp. 204–214 (2001)

7. Collobert, R., Bengio, S., Mariéthoz, J.: Torch: A Modular Machine Learning Soft-
ware Library. Technical Report IDIAP-RR 02-46 (2002)

8. Cuturi, M., Vert, J.-P.: Semigroup Kernels on Finite Sets. In: NIPS, pp. 329–336
(2004)

9. Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the Multiple-Instance Prob-
lem with Axis-Parallel Rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)

10. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-Instance Kernels. In:
ICML, pp. 179–186 (2002)

11. Giordana, A., Saitta, L.: Phase Transitions in Relational Learning. Machine Learn-
ing 41, 217–251 (2000)

12. Hogg, T., Huberman, B.A., C., Williams, C.P.: Phase Transitions and the Search
Problem. Artificial intelligence 81(1-2), 1–15 (1996)

13. Kearns, M., Li, M.: Learning in the Presence of Malicious Errors. SIAM J. Com-
put. 22, 807–837 (1993)

14. Kramer, S., Lavrac, N., Flach, P.: Propositionalization Approaches to Relational
Data Mining. In: Dzeroski, S., Lavrac, N. (eds.) Relational data mining, pp. 262–
291 (2001)

15. Kwok, J., Cheung, P.-M.: Marginalized Multi-Instance Kernels. In: Kwok, J., Che-
ung, P.-M. (eds.) IJCAI, pp. 901–906 (2007)

16. Mahé, P., Ralaivola, L., Stoven, V., Vert, J.-P.: The Pharmacophore Kernel for
Virtual Screening with Support Vector Machines. Journal of Chemical Information
and Modeling 46, 2003–2014 (2006)

17. Maron, O., Lozano-Pérez, T.: A Framework for Multiple-Instance Learning. In:
NIPS, pp. 570–576 (1997)

18. Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming 19, 629–679 (1994)

19. Pernot, N., Cornuéjols, A., Sebag, M.: Phase Transitions Within Grammatical
Inference. In: Pernot, N., Cornuéjols, A., Sebag, M. (eds.) IJCAI, pp. 811–816
(2005)

20. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Chichester (1998)
21. Weidmann, N., Frank, E., Pfahringer, B.: A Two level Learning Method for Gen-

eralized Multi-Instance Problems. In: Lavrač, N., Gamberger, D., Todorovski, L.,
Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer,
Heidelberg (2003)

22. Zhang, Q., Goldman, S.A.: EM-DD: A Improved Multiple-Instance Learning Tech-
nique. In: NIPS Proc of the 14th, pp. 1073–1080 (2001)

Combining Clauses

with Various Precisions and Recalls
to Produce Accurate Probabilistic Estimates

Mark Goadrich and Jude Shavlik

University of Wisconsin - Madison

Abstract. Statistical Relational Learning (SRL) combines the benefits
of probabilistic machine learning approaches with complex, structured
domains from Inductive Logic Programming (ILP). We propose a new
SRL algorithm, GleanerSRL, to generate the probability that an example
is positive within highly-skewed relational domains. In this work, we
combine clauses from Gleaner, an ILP algorithm for learning a wide
variety of first-order clauses, with the propositional learning technique
of support vector machines to learn well-calibrated probabilities. We find
that our results are comparable to SRL algorithms SAYU and SAYU-
VISTA on a well-known relational testbed.

1 Introduction

Inductive Logic Programming (ILP) is the process of learning first-order clauses
to correctly categorize domains of relational data. ILP uses relations expressed
in mathematical logic to describe examples, and can handle variable-sized struc-
tures and sequences [5]. Statistical Relational Learning (SRL) [8] builds on the
benefits of relational data and introduces methods for learning from large and
noisy datasets, typically in combination with producing probabilistic outputs as
opposed to strict classifications. Prominent work within SRL includes the gen-
erative approaches of Probabilistic Relational Models by Friedman et al. [7] and
Markov Logic Networks from Richardson and Domingos [17], as well as discrim-
inative algorithms such as SAYU and SAYU-VISTA from Davis et al. [4].

In this work we propose the use of Gleaner [9] as the foundation for a new
discriminative SRL algorithm called GleanerSRL. Gleaner is a two-stage algo-
rithm developed to first learn a broad spectrum of clauses and then combine
them into thresholded theories aimed at maximizing precision for a particular
choice of recall. Gleaner can run quickly on large datasets when one has a set
of available processors. Already new desktop computers include multiple cpu’s
(called ‘cores’), and within a few years it will be common for desktop computers
to have 32, 64, 128, or more cores. Also we have previously shown that Gleaner
can achieve good performance from only a relatively small number of clause eval-
uations per seed, because it keeps more than one good clause per seed, and we
believe the clauses learned from Gleaner will be more diverse than those found
with other approaches.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 122–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combining Clauses with Various Precisions 123

Train

Tune

Test

Glean
Clauses

Create
Feature
Vectors

Boolean

Binned

Learn
Scores

SVM

Naive
Bayes

Logistic
Regression

Calibrate
Proba-
bilities

Isotonic
Regression

1 2 3

4

4 Stages of GleanerSRL

Probabilities

or

or

or

Fig. 1. GleanerSRL takes training, tuning and testing examples and returns a prob-
ability estimate for the testing examples after four stages of processing. Black arrows
denote dependencies in training for a stage, while grey arrows denote only data trans-
formations. Note that the testset is not examined until training is complete in order to
allow us unbiased estimates of future performance.

We modify the two-stage approach used by Gleaner into GleanerSRL, which
learns clauses, produces feature vectors, and generates probabilities. We then
evaluate the quality of these approaches using Mean Cross Entropy in com-
parison to SAYU and SAYU-VISTA. Finally, we conclude by discussing future
directions and related work.

2 Learning Probabilities with GleanerSRL

GleanerSRL is a four-stage algorithm to directly estimate probabilities for re-
lational domains, as shown in Figure 1. The first stage learns a wide variety
of clauses from a large number of seed examples. The second stage uses the
clauses learned to generate a feature vector for each example, while the third
stage uses this feature vector in propositional learners to learn a numeric score
for each example, and the fourth stage calibrates these scores into probabilities.
In essence, we will be transforming our tasks into propositional domains through
the medium of our learned clauses and then using standard propositional learners
to estimate these probabilities.

2.1 Gleaning Clauses

The first stage of GleanerSRL is identical to that of the original Gleaner, and
learns a wide spectrum of clauses, illustrated in Figure 2. Gleaner brings in
a training set of positive and negative examples along with the background
knowledge. Each clause examined will cover a subset of examples; those that
are positive we call true positives (TP) and those that are negative we call false
positives (FP). The precision of a clause is then defined as TP

TP+FP . Not all
positives will be necessarily covered by a clause; those that are missed are called
false negatives (FN), and we define the recall of a clause as TP

TP+FN .

124 M. Goadrich and J. Shavlik

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Fig. 2. A hypothetical run of Gleaner for one seed and 20 bins on the training set,
showing each considered clause as a small circle, and the chosen clause per bin as a
large circle. This is repeated for K seeds to gather B × K clauses (assuming a clause
is found that falls into each bin for each seed).

Gleaner uses Aleph [18] to search for clauses using K seed examples to
encourage diversity. The recall dimension is uniformly divided into B equal
sized bins; in our experiments that appear in Section 3 our bins will be
[0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, we consider up to N possible
clauses using stochastic local-search methods [10]. As these clauses are gener-
ated, we compute the recall of each clause and determine into which bin the
clause falls. Each bin keeps track of the best clause appearing in its bin for the
current seed. We use the heuristic function precision × recall to determine each
bin’s best clause, since we believe this will increase the generality of our clauses.

At the end of this search process, there will be B clauses collected for each
seed and K seed examples for a maximum of B × K clauses (assuming a clause
is found that falls into each bin for each seed). Since clauses can be learned
independently for each seed, Gleaner is fast for large datasets because each seed
can be explored in parallel.

2.2 Creating Features

Whereas the second stage of Gleaner combines these learned clauses in an at-
tempt to maximize precision-recall (PR) curves on an unseen testset, here we
wish to instead estimate the probability that an example is positive. We can-
not directly convert Gleaner’s final PR curve into numeric scores, since each
point in the test curve may come from a distinct theory and threshold combina-
tion. Gleaner requires the user to find the point closest to their desired recall and
then uses this theory to rank the testset examples based on the particular theory
which generated this point. Since we are interested in directly generating prob-
abilities instead of recall-precision curves, we introduce here a new second stage
for GleanerSRL to transform the learned clauses into propositional features.

Our first transformation is the Boolean feature method. We create one feature
for each clause and assign the feature a value of 1 if the clause is true and 0 if the

Combining Clauses with Various Precisions 125

clause is false. In a scenario with 20 bins and 100 seeds, this would generate 2000
features, given that there is a clause found within each bin for all seeds and all
clauses are unique. We have found in practice that there are many less features
generated than the complete 2000 due to duplicate clauses within the high-
recall bins. These Boolean feature vectors are created for the trainset, tuneset
and testset examples.

A second approach is the binned feature method. We make use of the theories
and thresholds as previously calculated by the second stage Gleaner, making
one feature per bin. For each example, the value of a feature is equal to the
cumulative precision of each clause in this bin’s theory that match this example.
This reduces our features to only the number of bins no matter how many seeds
are explored. In our earlier work with Gleaner, we noticed that duplicate clauses
were found more often in the high-recall bins. This binning feature method will
retain a more uniform coverage of the recall space and will also take advantage
of combining similar clauses. We look at two binning feature methods, one with
the features as raw score of the cumulative precision for each bin, and one with
the cumulative precision normalized to between 0 and 1 by the maximum score
found in that bin. The precision for each clause is calculated on the trainset, and
bin feature vectors are created for the trainset, tuneset and testset examples.
Using the tuneset to calculate the precision is also recommended, but I reuse
the trainset to maintain a suitably large number of positive examples for these
calculations.

2.3 Learning to Predict Scores

With the feature vectors calculated from the second stage, our problem is now
propositional in nature. The third stage of GleanerSRL uses standard proposi-
tional approaches to estimate the probability for each example. We will be using
classifiers where each feature f is assigned a weight wf through training. For a
new example xi, where 0 < i ≤ N for a testing set of size N and xi,j is the value
of feature f on example xi, we discriminate between positive and negative using
a threshold b as follows:

If
∑

f∈feats

(wf × xi,f) > b then +, else -

We can achieve a richer feature space by using a kernel matrix K to give us a no-
tion of similarity between example xi and the examples in our training set (minus
those set aside in the tuning set). The simplest kernel is constructed by taking the
dot product of xi and example xj , such that K(xi, xj) =

∑
f∈feats(xi,f × xj,f).

We can then replace our weighted feature model from above with

If
∑

j∈examples

(αj × K(xi, xj)) > b then +, else -

where αj is a weight on each kernel-induced feature. For the purposes of esti-
mating probabilities, we are only really interested in the weighted sum from the

126 M. Goadrich and J. Shavlik

Table 1. We examine five different kernel methods for calculating K(xi, xj) =�
f∈features k(xi,f , xj,f) for Boolean feature vectors

Kernel k(xi,f , xj,f)

Dot-Prod k(1, 1) : 1, else : 0

Precision k(1, 1) : precisionf , else : 0

Recall k(1, 1) : 1 − recallf , else : 0

Both-Pos k(1, 1) : precision2
f , else : 0

Info

k(1, 1) : −log2((TP+FP
|trainset|)

2)

k(1, 0) or k(0, 1) : −log2(2 × TP+FP
|trainset| × (1 − TP+FP

|trainset|))

k(0, 0) : −log2((1 − TP+FP
|trainset|)

2)

above thresholded classification, and we use this as a numeric score s for each
example.

Our particular classifier choice for this paper is the Support Vector Machine
(SVM) [2]. SVMs learn weights for αj that maximize the margin between the
classification hyperplane and the training data by solving a linear or quadratic
program. In practice (especially when using linear programming), most αj val-
ues will be 0, thus ignoring a large number of our kernel-induced features. In
our preliminary testing, we also investigated using näıve Bayes and Logistic Re-
gression. We found them to be significantly outperformed by the SVM approach
and therefore do not include those results.

We examine here five different kernels, shown in Table 1, for use within our
SVM. First we use a simple dot-product kernel discussed above in combination
with both of the binning feature methods. As for kernels on Boolean features, we
also use a dot-product kernel, as well as four attempts to incorporate statistics
from the training set about each clause.

Since the similarity under the dot-product kernel is only increased when two
examples match on a feature (when features are all Boolean valued), we can
score each match instead by the precision of that clause as calculated on the
training set example. This means that examples will be more similar when they
are both covered by high-precision clauses. Similarly for recall, we use the score
1 − recallf . Since we aim to collect clauses that have high precision in the first
stage, matching an example on a low-recall clause should be more meaningful in
relation to the positive examples.

We also explore two kernel methods related to the probability that a given
clause is expected to match a particular example, called both-pos and info. Pre-
cision equals the probability of an example being truly positive given that it
matched the clause, therefore precision2

f is the probability that any two exam-
ples are truly positive given that they both match on xi,f , assuming indepen-
dence, and we use this as our weight for both-pos. The actual probability of a
given clause matching any example is based on the number of true and false

Combining Clauses with Various Precisions 127

positives for that clause: probf = TP+FP
|dataset| . For the info kernel, we consider the

information content for the probabilities of both, only one, or none of the ex-
amples matching (using −log2(p(X)) for each case). Two other kernel method
explored but not reported here are the Hamming distance between two clauses
(where clauses are more similar if they return the same classification on a given
example, be it positive or negative) and a Gaussian kernel, as they were outper-
formed by our above kernels in preliminary tests.

2.4 Calibrating Probabilities

The SVM weighted sums from above will not be strict probabilities between 0
and 1. Therefore in the final stage of GleanerSRL, we calibrate these scores into
proper probabilities. Zadrozny and Elkan [21] and Niculescu-Mizil and Caruna
[14] recommend Isotonic Regression for large highly-skewed datasets. The main
idea behind isotonic regression is to transform the sorted list of SVM scores
into monotonically increasing probability scores which minimize the probability
errors, and can be seen as an adaptive method for automatically finding the
proper bin widths based on the tuning data. We achieve this isotonic regression
by using the Pool Adjacent Violators (PAV) algorithm. Given a set of examples
(si, ci), where each example i consists of the weighted SVM score s along with
the classification c, where c is now 1 for positive examples and 0 for negative
examples, PAV will return a mapping for a range of si scores to their calibrated
ci values. We calibrate our probabilities on a tuning set and then use the found
mapping to assign probabilities p(xi) on our testing set. Note that this step is not
necessary but still recommended when using näıve Bayes or logistic regression.

3 Experimental Results

We follow the methodology of Caruna and Niculescu-Mizil [1], and evaluate our
probability estimates from GleanerSRL using the metric of Mean Cross Entropy
(MCE). In preliminary work we found the results from using mean squared
error to be very similar, thus those results are not included here. Cross entropy
calculates the difference of predicted probability from the true probability; the
formula is derived from information theory and Kullback-Liebler divergence.
Formally,

MCE = −
∑n

i=0(a(xi)log(p(xi)) + (1 − a(xi))log(1 − p(xi))
n

where n is the testset size, a(xi) is the actual probability of example i (in our
case 0 or 1) and p(xi) is our estimate. To properly compute these numbers, we
enforced a bound on the probability estimates so that 0 < probmin ≤ p(X) ≤
1−probmin < 1. We tune this bound on our tuning set using leave-one-out cross-
validation. This bound is helpful when there is a complete mistake in probability,
where the actual probability is 1 and the predicted probability is 0, or vice versa,
since the cross entropy error will be infinity.

128 M. Goadrich and J. Shavlik

0.000 0.004 0.008 0.012 0.016

Binned
Dot-Prod

Bool
Dot-Prod

Bool
Precision

Bool
Recall

Bool
Both-Pos

Binned Norm
Dot-Prod

Bool
Info

MCE Error

(a) Cross Entropy Error for OMIM

0.00 0.06 0.12 0.18

Bool
Precision

Bool
Recall

Bool
Dot-Prod

Binned Norm
Dot-Prod

Binned
Dot-Prod

SAYU

SAYU-
VISTA

MCE Error

0.03 0.09 0.15

(b) Cross Entropy Error for Advisor

Fig. 3. Comparison of Mean Cross Entropy GleanerSRL kernel methods and SAYU,
ordered from least to most on each dataset

We report results on two highly-skewed domains, OMIM and Advisor:

OMIM. This is the Online Mendelian Inheritance in Man genetic-disorder bio-
medical information extraction dataset from Ray and Craven [16]. From a sen-
tence such as “Mutations in the COL3A1 gene have been implicated as a cause
of type IV Ehlers-Danlos syndrome, a disease leading to aortic rupture in early
adult life,” the task is to extract a relationship between the gene COL3A1 and
Ehlers-Danlos syndrome. We use the ILP dataset construction of Goadrich et
al. [9], which contains five disjoint folds with 233 positive and 103,959 negative
examples.

Advisor. This dataset is derived from the University of Washington CS De-
partment. It was constructed by Richardson and Domingos [17]. The goal is to
predict the advisor of a graduate student, where students, professors, courses
and papers are known to be related by author, instructor, and teaching assistant
relations. This dataset contains five disjoint folds with a total of 113 positive
examples and 2,711 negative examples.

For the parameters of GleanerSRL, we ran Gleaner with 20 bins, 100 seeds
for OMIM and 50 seeds for Advisor until 25,000 clauses were examined for each
seed. In combination with the SVM for stage three, we tuned with nine values
for the complexity parameter C ranging from 10,000 to 0.0001, and in stage four
we tested nine values for probmin from 0.25 to 0.0001. Different C and probmin

values were chosen for each fold.
Figure 3(a) shows the results of our kernel choices for GleanerSRL on OMIM.

Binnned feature vectors combined with the dot product kernel outperforms the
rest, however, this is only a statistically significant difference with the Boolean
match kernel. It is interesting to note that the highest scoring approaches use
the dot product kernels for both types of feature vectors.

The results on Advisor in Figure 3(b) again show that Binned Dot Product
outperforms our other approaches. Once again the dot product kernel is the
best choice. We also compare to SAYU and SAYU-VISTA from Davis et al. [4],
using a tree-augmented network [6] and an eager rule-adoption policy. SAYU
learns a Bayesian network for classification by continually adding features when

Combining Clauses with Various Precisions 129

a clause makes a significant improvement in the Area Under the Curve for Pre-
cision and Recall (AUC-PR). VISTA builds on SAYU by incorporating new
predicates throughout the learning process. We find that the difference between
GleanerSRL both SAYU-VISTA and SAYU is not statistically significant. We
separately explored directly optimizing the MCE for SAYU, and found the re-
sults were slightly worse than optimizing for AUC-PR, but the difference was
not statistically significant.

4 Related and Future Work

One typical approach to weighting a theory in ILP is propositionalization, where
each clause in a theory is translated into a Boolean feature. This allows for a
number of propositional learning algorithms to be used for learning weights on
each clause. Pompe and Kononenko [15] use a näıve Bayes classifier to find their
weights, while Srinivasan and King [19] use logistic regression, a technique to
find weights that will maximize the likelihood of the data.

Koller and Pfeffer [11] learn the weights for clauses in a theory by first cre-
ating a Bayesian network model for the theory. They then use an Expectation
Maximization algorithm to set the parameters to maximize the likelihood of the
data. Their results are on a toy dataset with three clauses, so it is unknown how
well this would extend to the very large datasets we propose to investigate here.
Richardson and Domingos [17] extend work with Relational Markov Networks
[20] to formulate Markov Logic Networks. Their setup can take clauses from
either ILP or a domain expert, translate them to a Markov Network, and then
learn the weights on the clauses using logistic regression. Davis et al. [3] compare
näıve Bayes, TAN and the sparse candidate algorithm as alternate methods of
learning appropriate weight parameters. As in the above methods, there is no
attempt to modify the learned theory, only the weights.

Support Vector Machines are a recent addition to the SRL toolkit, with con-
tributions of Support Vector Inductive Logic Programming (SVILP) from Mug-
gleton et al. [13], and kFOIL by Landwehr et al. [12]. SVILP is most similar to
our work, in that both use learned first-order clauses to create a kernel for prob-
abilistic output. However, where they use mainly a Gaussian kernel with a prior
probability over the clauses, we explore kernel methods and clause generation
that are informed by precision and recall on the training set. kFOIL presents
a dynamic kernel construction process, where the choice of clauses to add is
informed by the current classification accuracy. Conversely, GleanerSRL learns
clauses first and then constructs the kernel, and through the use of Gleaner we
can quickly and in parallel explore a large area of large hypothesis spaces.

We have explored the use of GleanerSRL through comparisons on two rela-
tional domains. In future work, we plan to compare with other SRL methods
and apply GleanerSRL to much larger testbeds, where we hope to see significant
speedups in search time due to using Gleaner over other methods. We also plan
to investigate other kernel methods and propositional learning algorithms, as
well as alternate feature vector transformations.

130 M. Goadrich and J. Shavlik

Acknowledgements

We would like to thank Ameet Soni, Jesse Davis, Louis Oliphant, the UW Condor
Group, and our anonymous reviewers for their helpful comments and suggestions
regarding this work. This project is supported by DARPA grant HR0011-04-1-
0007 and DARPA IPTO under contract FA8650-06-C-7606.

References

1. Caruana, R., Niculescu-Mizil, A.: An Empirical Comparison of Supervised Learn-
ing Algorithms. In: Proceedings of the 23rd International Conference on Machine
Learning (2006)

2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2000)

3. Davis, J., Dutra, I.C., Page, D., Costa, V.S.: Establish Entity Equivalence in Multi-
Relation Domains. In: Proceedings of the International Conference on Intelligence
Analysis, Vienna, Va (2005)

4. Davis, J., Ong, I., Struyf, J., Burnside, E., Page, D., Costa, V.S.: Change of Rep-
resentation for Statistical Relational Learning. In: Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (2007)

5. Džeroski, S., Lavrac, N.: An Introduction to Inductive Logic Programming. In:
Relational Data Mining, pp. 48–66. Springer, Heidelberg (2001)

6. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29(2-3), 131–163 (1997)

7. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning Probabilistic Relational
Models. In: Proceedings of the 16th International Conference on Artificial Intelli-
gence, pp. 1300–1309 (1999)

8. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press,
Cambridge (2007)

9. Goadrich, M., Oliphant, L., Shavlik, J.: Gleaner: Creating Ensembles of First-order
Clauses to Improve Recall-Precision Curves. Machine Learning 64, 231–262 (2006)

10. Hoos, H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (2004)

11. Koller, D., Pfeffer, A.: Learning Probabilities for Noisy First-Order Rules. In: Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence (IJ-
CAI), Nagoya, Japan (August 1997)

12. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning Simple
Relational Kernels. In: Proceedings of the 21st National Conference on Artificial
Intelligence (2006)

13. Muggleton, S., Amini, A., Lodhi, H., Sternberg, M.: Support Vector Inductive Logic
Programming. In: Proceedings of the 8th International Conference on Discovery
Science (2005)

14. Niculescu-Mizil, A., Caruana, R.: Predicting Good Probabilities with Supervised
Learning. In: Proceedings of the 22nd International Conference on Machine Learn-
ing, pp. 625–632 (2005)

15. Pompe, U., Kononenko, I.: Naive Bayesian Classifier within ILP-R. In: Fifth In-
ternational Workshop on Inductive Logic Programming, pp. 417–436 (1995)

Combining Clauses with Various Precisions 131

16. Ray, S., Craven, M.: Representing Sentence Structure in Hidden Markov Models for
Information Extraction. In: Proceedings of the 17th International Joint Conference
on Artificial Intelligence (2001)

17. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–
136 (2006)

18. Srinivasan, A.: The Aleph Manual Version 4 (2003), http://web.comlab.ox.ac.
uk/oucl/research/areas/machlearn/Aleph/

19. Srinivasan, A., King, R.: Feature Construction with Inductive Logic Programming:
A Study of Quantitative Predictions of Biological Activity Aided by Structural At-
tributes. In: Muggleton, S. (ed.) Proceedings of the 6th International Workshop on
Inductive Logic Programming. Stockholm University, Royal Institute of Technol-
ogy, pp. 352–367 (1996)

20. Taskar, B., Abbeel, P., Wong, M.-F., Koller, D.: Label and Link Prediction in Re-
lational Data. In: IJCAI Workshop on Learning Statistical Models from Relational
Data (2003)

21. Zadrozny, B., Elkan, C.: Transforming Classifier Scores into Accurate Multiclass
Probability Estimates. In: The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2002)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

Applying Inductive Logic Programming to

Process Mining

Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari

ENDIF – Università di Ferrara – Via Saragat, 1 – 44100 Ferrara, Italy
{evelina.lamma,fabrizio.riguzzi,sergio.storari}@unife.it

DEIS – Università di Bologna – Viale Risorgimento, 2 – 40136 Bologna, Italy
pmello@deis.unibo.it

Abstract. The management of business processes has recently received
a lot of attention. One of the most interesting problems is the descrip-
tion of a process model in a language that allows the checking of the
compliance of a process execution (or trace) to the model. In this paper
we propose a language for the representation of process models that is
inspired to the SCIFF language and is an extension of clausal logic. A
process model is represented in the language as a set of integrity con-
straints that allow conjunctive formulas as disjuncts in the head. We
present an approach for inducing these models from data: we define a
subsumption relation for the integrity constraints, we define a refinement
operator and we adapt the algorithm ICL to the problem of learning such
formulas. The system has been applied to the problem of inducing the
model of a sealed bid auction and of the NetBill protocol. The data used
for learning and testing were randomly generated from correct models of
the processes.

Keywords: Process Mining, Learning from Interpretations, Business
Processes, Interaction Protocols.

1 Introduction

Every organization performs a number of business processes in order to achieve
its mission. Complex organizations are characterized by complex processes, in-
volving many people, activities and resources. The performances of an organi-
zation depend on how accurately and efficiently it enacts its business processes.
Formal ways of representing business processes have been studied in the area of
business processes management (see e.g. [1]), so that the actual enactment of a
process can be checked for compliance with a model.

Recently, the problem of automatically inferring such a model from data has
been studied by many authors (see e.g. [2,3,4]). This problem has been called
Process Mining or Workflow Mining. The data in this case consists of execu-
tion traces (or histories) of the business process. The collection of such data is
made possible by the facility offered by many information systems of logging the
activities performed by users.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 132–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Applying Inductive Logic Programming to Process Mining 133

In this paper, we propose a novel representation language for describing
process models and an approach to Process Mining that uses learning from
interpretations techniques from ILP. The language is inspired to the SCIFF one
[5] and extends clausal logic by allowing more complex formulas as disjuncts in
the head of clauses.

We show how an execution trace can be represented as an interpretation and
how we can use our language to check its compliance with the model. Thus we
can cast a process mining problem as a learning from interpretations problem.
In particular, we considered the discriminant problem that is solved by ICL [6],
where we have positive and negative interpretations and we want to find a clausal
theory that discriminates the two. In our case we assume that we have compliant
and non compliant traces of execution of a process and we want to find a theory
that accurately classifies a new trace as compliant or non compliant.

We differ from traditional process mining research in three respects: first we
perform mining from both compliant and non compliant traces, while tradition-
ally only compliant traces are considered; second we learn a declarative repre-
sentation of a process model, while usually more procedural representation have
been induced, such as Petri nets, and third, we are able to consider structured
atomic activities, thanks to the first order representation.

The fact of having positive and negative traces is not commonly considered
in the literature on process mining but it is interesting in a variety of cases: for
example, a bank may divide its transactions into fraudulent and normal ones
and may desire to learn a model that is able to discriminate the two. In general,
an organization may have two or more sets of process executions and may want
to understand in what sense they differ.

The use of a declarative language for process models is advocated by other
authors as well [7]. The use of a structured representation allows the system to
take into account many different properties of activities that would otherwise be
overlooked.

The paper is organized as follows. Section 2 discusses how we represent execu-
tion traces with logic programming and describes the language used to represent
process models. Section 3 presents the learning technique we have adopted for
performing Process Mining. Section 4 reports on the experiments performed.
Section 5 discusses related works and finally Section 6 concludes the paper.

2 A Representation for Process Traces and Models

A process trace t is a sequence of events that are activity executions. Each event
is described by a number of attributes. The only requirement is that one of the
attributes describes the activity type. Other attributes may be the executor of
the event or event specific information.

An example of a trace is
〈a, b, c〉

that means that an activity of type a was performed first, then an activity of
type b and finally an activity of type c.

134 E. Lamma et al.

A process model PM is a formula in a language. An interpreter of the language
must exists that, when applied to a model PM and a trace t, returns answer
yes if the trace is compliant with the description and false otherwise. In the first
case we write t |= PM , in the second case t �|= PM .

A bag of process traces L is called a log. Usually, in Process Mining, only
compliant traces are used as input of the learning algorithm, see e.g. [2,3,4]. We
consider instead the case where we are given both compliant and non compliant
traces.

A process trace can be represented as an interpretation: each event is modeled
with an atom whose predicate is the activity type and whose arguments store
the attributes of the activity execution. Moreover, an extra argument is added
to the atom indicating the position in the sequence. For example, the trace:

〈a, b, c〉
can be represented with the interpretation

{a(1), b(2), c(3)}.
If the execution time is an attribute of the event, then the position in the se-
quence can be omitted.

Besides the trace, we may have some general knowledge that is valid for all
traces. This information will be called background knowledge and we assume that
it can be represented as a normal logic program B. The rules of B allow to com-
plete the information present in a trace t: rather than simply t, we now consider
M(B ∪ t), the model of the program B ∪ t according to Clark’s completion [8].

The process language we consider is a subset of the SCIFF language, originally
defined in [9,5], for specifying and verifying interaction in open agent societies.

A process model in our language is a set of Integrity Constraints (ICs). An
IC, C, is a logical formula of the form

Body → ∃(ConjP1) ∨ . . . ∨ ∃(ConjPn) ∨ ∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm) (1)

where Body, ConjPi i = 1, . . . , n and ConjNj j = 1, . . . , m are conjunctions
of literals built over event atoms, over predicates defined in the background or
over built-in predicates. The quantifiers in the head apply to all the variables
not appearing in the body. The variables of the body are implicitly universally
quantified with scope the entire formula.

We will use Body(C) to indicate Body and Head(C) to indicate the for-
mula ∃(ConjP1) ∨ . . . ∨ ∃(ConjPn) ∨ ∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm) and call
them respectively the body and the head of C. We will use HeadSetP (C) to
indicate the set {ConjP1, . . . , ConjPn} and HeadSetN(C) to indicate the set
{ConjN1, . . . , ConjNm}.

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . , m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the context.
We will call P conjunction each ConjPi for i = 1, . . . , n and N conjunction each
ConjNj for j = 1, . . . , m. We will call P disjunct each ∃(ConjPi) for i = 1, . . . , n
and N disjunct each ∀¬(ConjNj) for j = 1, . . . , m.

Applying Inductive Logic Programming to Process Mining 135

An example of an IC is

a(bob, T), T < 10
→∃T 1(b(alice, T1), T < T 1)

∨
∀T 1¬(c(mary, T 1), T < T 1, T 1 < T + 10)

(2)

The meaning of the IC (2) is the following: if bob has executed action a at
a time T < 10, then alice must execute action b at a time T 1 later than T or
mary must not execute action c for 9 time units after T .

An IC C is true in an interpretation M(B ∪ t), written M(B ∪ t) |= C, if, for
every substitution θ for which Body is true in M(B ∪ t), there exists a disjunct
∃(ConjPi) or ∀¬(ConjNj) that is true in M(B ∪ t). If M(B ∪ t) |= C we say
that the trace t is compliant with C.

Similarly to what has been observed in [10] for disjunctive clauses, the truth
of an IC in an interpretation M(B ∪ t) can be tested by running the query:

? − Body, not(ConjP1), . . . not(ConjPn), ConjN1, . . . , ConjNm

in a database containing the clauses of B and the atoms of t as facts.
If the N conjunctions in the head share some variables, then the following

query must be issued
? − Body, not(ConjP1), . . . not(ConjPn),
not(not(ConjN1)), . . . , not(not(ConjNm))

that ensures that the N conjunctions are tested separately without instantiating
the variables.

If the query finitely fails, the IC is true in the interpretation. If the query
succeeds, the IC is false in the interpretation. Otherwise nothing can be said.
It is the user’s responsibility to write the background B in such a way that no
query generates an infinite loop. For example, if B is acyclic then we will have
termination for a large class of queries [11].

A process model H is true in an interpretation M(B ∪ t) if every IC is true
in it and we write M(B ∪ t) |= H . We also say that trace t is compliant with H .

The ICs we consider are more expressive than logical clauses, as can be seen
from the query used to test them: for ICs, we have the negation of conjunctions,
while for clauses we have only the negation of atoms. This added expressiveness
is necessary for dealing with processes because it allows us to represent relations
between the execution times of two or more activities.

3 Learning ICs Theories

In order to learn a theory that describes a process, we must search the space of
ICs. To this purpose, we need to define a generality order in such a space.

IC C is more general than IC D if C is true in a superset of the traces where
D is true. If D |= C, then C is more general than D.

Definition 1 (Subsumption). An IC D subsumes an IC C, written D ≥ C,
iff it exists a substitution θ for the variables in the body of D or in the N
conjunctions of D such that

136 E. Lamma et al.

– Body(D)θ ⊆ Body(C) and
– ∀ConjP (D) ∈ HeadSetP (D), ∃ConjP (C) ∈ HeadSetP (C) : ConjP (C) ⊆

ConjP (D)θ and
– ∀ConjN(D) ∈ HeadSetN(D), ∃ConjN(C) ∈ HeadSetN(C) : ConjN(D)θ

⊆ ConjN(C)

Theorem 1. D ≥ C ⇒ D |= C.

Proof. We must prove that all the models of D are also models of C. Let θ be
the substitution with which D subsumes C. Consider a model i of D. If � ∃δ such
that Body(C)δ is true in i, then C is true in i.

If ∃δ such that Body(C)δ is true in i, then Body(D)θδ will be true in i because
Body(D)θδ ⊆ Body(C)δ. So there must be a disjunct of Head(D)θδ that is true
in i.

Suppose that the disjunct ∃(ConjP (D)) of D is such that ∃(ConjP (D)θδ)
is true in i: C will contain a disjunct ∃ConjP (C) such that ConjP (C) ⊆
ConjP (D)θ, thus ConjP (C)δ ⊆ ConjP (D)θδ and it holds that ∃(ConjP (C)δ).

Suppose that the disjunct ∀¬(ConjN(D)) of D is such that ∀¬(ConjN(D)θδ)
is true in i: C will contain a disjunct ∀¬(ConjN(C)) such that ConjN(D)θ ⊆
ConjP (C), thus ConjN(D)δθ ⊆ ConjP (C)δ and it holds that ∀¬(ConjP (C)δ).

Thus i is also a model of C

In order to define a refinement operator, we must first define the language bias.
We use a language bias that consists of a set of IC templates. Each template
specifies:

– a set of literals BS allowed in the body;
– a set of disjuncts HS allowed in the head. For each disjunct, the template

specifies:
• whether it is a P or an N disjunct,
• the set of literals allowed in the disjunct.

Thus we can define a refinement operator in the following way: given an IC D,
the set of refinements ρ(D) of D is obtained by performing one of the following
operations:

– adding a literal from the IC template for D to the body;
– adding a disjunct from the IC template for D to the head: the disjunct can

be
• a formula ∃(d1 ∧ . . . ∧dk) where {d1, . . . , dk} is the set of literals allowed

by the IC template for D for a P disjunct,
• a formula ∀¬(d) where d is a literal allowed by the IC template for D

for an N disjunct;
– removing a literal from a P disjunct in the head;
– adding a literal to an N disjunct in the head. The literal must be allowed

by the language bias.

Applying Inductive Logic Programming to Process Mining 137

The learning problem we consider is an adaptation to ICs of the learning from
interpretation setting of ILP:

Given

– a space of possible process models H
– a set I+ of positive traces;
– a set I− of negative traces;
– a definite clause background theory B.

Find: a process model H ∈ H such that

– for all i+ ∈ I+, M(B ∪ i+) |= H ;
– for all i− ∈ I−, M(B ∪ i−) �|= H ;

If M(B ∪ i) |= C we say that IC C covers the trace i and if M(B ∪ i) �|= C we
say that C rules out the trace i.

In order to solve the problem, we propose the algorithm DPML (Declarative
Process Model Learner) that is an adaptation of ICL [6].

DPML performs a covering loop (function DPML, Figure 1) in which negative
interpretations are progressively ruled out and removed from the set I−. At each

function DPML(I+, I−, B)
initialize H := ∅
do

C := FindBestIC(I+, I−, B)
if C �= ∅ then

add C to H
remove from I− all the traces that are false for C

while C �= ∅ and I− is not empty
return H

function FindBestIC(I+, I−, B)
initialize Beam := {false ← true}
initialize BestIC := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each IC C in Beam do

for each refinement Ref of C do
if Ref is better than BestIC then BestIC := Ref
if Ref is not to be pruned then

add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam
Beam := NewBeam

return BestIC

Fig. 1. DPML learning algorithm

138 E. Lamma et al.

iteration of the loop a new IC is added to the theory. Each IC rules out some
negative interpretations. The loop ends when I− is empty or when no IC is
found.

The IC to be added in every iteration of the covering loop is returned by the
procedure FindBestIC (Figure 1). It looks for an IC by using beam search with
p(�|C) as the heuristic function, where p(�|C) is the probability that an input
trace is negative given that is ruled out by the IC C. This heuristic is computed
as the number of ruled out negative traces over the total number of ruled out
traces (positive and negative). Thus we look for formulas that cover as many
positive traces as possible and rule out as many negative traces as possible. The
search starts from the IC false ← true that rules out all the negative traces but
also all the positive traces and gradually refines that clause in order to make
it more general. Even if the heuristic value of false ← true is p(�), i.e. the
fraction of negative traces in the training set, this IC is initially assigned an
heuristic of 0 so that it is not considered better of any other IC. MaxBeamSize
is a user-defined constant storing the maximum size of the beam.

The heuristic of each generated refinement is compared with the one of the
best IC found so far and, if the value is higher, the best IC is updated. At the
end of the refinement cycle, the best IC found so far is returned.

DPML differs from ICL in three respects: we use a different testing procedure,
a different refinement operator and a simpler pruning. As regards the refinement
operator, Dlab does not allow the possibility of having a conjunction inside
negation and it does not allow the deletion of literals from a refinement.

As regards pruning, we do not prune the IC that are not statistically significant
but we prune only the refinements that can not become better than the current
best clause. We decided to do so because we observed that statistical significance
has a low impact on experiments.

4 Experiments

We consider two interaction protocols among agents: an electronic auction pro-
tocol [12] and the NetBill protocol [13]. In both cases, we start from a set of ICs
describing the protocol, and we randomly generate some traces for the protocol.
They are then classified according to the model and are used for learning. For
testing, we use a separate set of randomly generated traces.

The first protocol we consider is a sealed bid auction where the auctioneer
communicates the bidders the opening of the auction, the bidders answer with
bids over the good and then the auctioneer communicates the bidders whether
they have won or lost the auction.

The protocol is described by the following ICs [14].

bid(B, A, Quote, TBid)
→∃(openauction(A, B, TEnd, TDL, TOpen),

TOpen < TBid, TBid < TEnd)
(3)

Applying Inductive Logic Programming to Process Mining 139

This IC states that if a bidder sends the auctioneer a bid, then there must
have been an openauction message sent before by the auctioneer and such that
the bid has arrived in time (before TEnd).

openauction(A, B, TEnd, TDL, TOpen),
bid(B, A, Quote, TBid),
TOpen < TBid

→∃(answer(A, B, lose, Quote, TLose),
TLose < TDL, TEnd < TLose)

∨∃(answer(A, B, win, Quote, TWin),
TWin < TDL, TEnd < TWin)

(4)

This IC states that if there is an openauction and a valid bid, then the auctioneer
must answer with either win or lose after the end of the bidding time (TEnd)
and before the deadline (TDL).

answer(A, B, win, Quote, TWin)
→∀¬(answer(A, B, lose, Quote, TLose), TWin < TLose)

(5)

answer(A, B, lose, Quote, TLose)
→∀¬(answer(A, B, win, Quote, TWin), TLose < TWin)

(6)

These two ICs state that the auctioneer can not answer both win and lose to
the same bidder.

A graphical representation of the protocol is shown in Figure 2.
The traces have been generated in the following way: the first message is

always openauction, the following messages are generated randomly between
bid and answer. For answer, win and lose are selected randomly with equal
probability. The bidders and auctioneer are always the same. The times are
selected randomly from 2 to 10. Once a trace is generated, it is tested with the
above ICs. If the trace satisfies all the ICs it is added to the set of positive traces,
otherwise it is added to the set of negative traces. This process is repeated until
500 positive and 500 negative traces are generated for length 3, 4, 5 and 6. Thus
overall there are 2000 positive traces and 2000 negative traces.

NetBill is a security and transaction protocol optimized for the selling and de-
livery of low-priced information goods, such as software or journal articles, across
the Internet. The protocols involves three parties: the customer, the merchant
and the NetBill server. Here is an outline of the NetBill protocol (see Figure 3):

1. the customer requests a price for a good from the merchant;
2. the merchant answers with a price for the good;
3. the customer can accept the offer, refuse it or make another request to the

merchant, thus initiating a new negotiation and going back to step 2;
4. if the customer accepts the offer, it tells it to the merchant;
5. the merchant delivers the good to the customer encrypted with key K;

140 E. Lamma et al.

Fig. 2. Sealed bid auction protocol

6. the customer prepares an electronic purchase order (EPO) digitally signed
by her and sends it to the merchant;

7. the merchant countersigns the EPO and sends it and the value of K to the
NetBill server;

8. the NetBill server checks the signature and counter-signature on the EPO.
If customer’s account contains enough funds, the NetBill server transfers the
price from the customer’s account to the merchant’s account. The NetBill
server then prepares a signed receipt that includes the value K, and it sends
this receipt to the merchant;

9. the merchant records the receipt and forwards it to the customer (who can
then decrypt her encrypted goods).

The NetBill protocol is represented using 19 ICs [14]. One of them is

request(C, M, good(G, Q), NNeg, TReq),
present(M, C, good(G, Q), NNeg, TP), TReq ≤ TP

→∃(accept(C, M, good(G, Q), TA), TP ≤ TA)
∨∃(refuse(C, M, good(G, Q), TRef), TP ≤ TRef)
∨∃(request(C, M, good(G, Q1), NNeg1, TReq1), TP ≤ TReq1)

(7)

This IC states that if there has been a request from the customer to the merchant
and the merchant has answered with the same price, then the customer should
either accept the offer, refuse the offer or start a new negotiation with a request.

Applying Inductive Logic Programming to Process Mining 141

Fig. 3. NetBill transaction protocol

The traces have been generated randomly in two stages: first the negotiation
phase is generated and then the transaction phase. In the negotiation phase, we
add to the end of the trace a request or present message with its arguments
randomly generated with two possible values for Q (quote). The length of the
negotiation phase is selected randomly between 2 and 5. After the completion of
the negotiation phase, either an accept or a refuse message is added to the trace
and the transaction phase is entered with probability 4/5, otherwise the trace is
closed.

In the transaction phase, the messages deliver, epo, epo and key, receipt and
receipt client are added to the trace. With probability 1/4 a message from the
whole trace is then removed.

Once a trace has been generated, it is classified with the ICs of the correct
model and assigned to the set of positive or negative traces depending on the
result of the test. The process is repeated until 2000 positive traces and 2000
negative traces have been generated.

Five training sets have been generated for the auction protocol and five for
the NetBill protocol. Then DPML and the α-algorithm [15] have been applied to
each of them. The α-algorithm is one of the first process mining algorithms and
it induces Petri nets. We used the implementation of it available in the ProM
suite [16]. Since the α-algorithm takes as input a single set of traces, we have
provided it with the positive traces only.

142 E. Lamma et al.

The language bias that was used for the auction protocol is the following:

– BS contains two sets of instances of each action (open auction, bid, an-
swer win and answer lose), with the instances of each set having the same
variables;

– HS contains a P disjunct for open auction, answer win and answer lose and
an N disjunct for open auction, answer win and answer lose. The disjuncts
for open auction will contain atoms for the predicate less that compare each
of its time arguments with the times of the literals in the body. The disjuncts
for answer will contain atoms for the predicate less that compare its time
to the time arguments of the literals in the body.

For example, BS will contain
openauction(f,taxi1,TEnd,TDead,T)

and
openauction(f,taxi1,TEnd1,TDead1,T1)

and HS will contain the P conjunction:
{answer(f,taxi1,lose,taxi2station,Price3,T2), lessp(T,T2), lessp(T1,T2),
lessp(TEnd,T2), lessp(TDead,T2), lessp(TEnd1,T2), lessp(TDead1,T2),
lessp(T2,TDead), lessp(T2,TDead1)}

where lessp(A, B) is a predicate that fails if one of its two arguments is not
instantiated and is equal to A < B otherwise. In this way, if one of its arguments
is not instantiated, the disjunct can not be true and the learning algorithm must
either add the literal with the variable to the body or remove the lessp atom.

The language bias that was used for NetBill is the following:

– BS contains two sets of instances of each action (request, present, accept,
deliver, send epo, send epo and key, receipt and receipt to client), with the
instances of each set having the same variables;

– HS contains a P disjunct and an N disjunct for each action. The disjuncts
will contain atoms for the predicate less that compare the time argument
of the action with the times of the actions in the body plus atoms for the
predicate equal for comparing the quote of the action in the head with those
in the body.

For example, BS will contain
request(c,m,good(software,Q),T)

and
request(c,m,good(software,Q1),T1)

and HS will contain the P conjunction:
{request(c,m,good(software,Q2,n1,T2), lessp(T,T2), lessp(T1,T2),
lessp(T2,T), lessp(T2,T1), equalp(Q2,Q), equalp(Q2,Q1)}

where lessp(A, B) is defined as before and equalp(A, B) is false if one of the
arguments is not instantiated and is equal to A =:= B otherwise.

The learned theories have been tested on five testing set generated with the
same procedure used for the training set but with different seeds for the random
functions. For the α-algorithm, the Petri net learned from positive traces only
was used to replay the positive and negative test traces. The accuracy is given

Applying Inductive Logic Programming to Process Mining 143

by the number of positive traces that are replayed correctly plus the number of
negative traces not replayed correctly divided by the total number of test traces.

The average accuracy and the standard deviation of DPML and of the α-
algorithm are shown in Table 1. The table shows also the the average number of
ICs learned by DPML.

Table 1. Results of the experiments

DPML α-algorithm

Experiment Av. acc. St. dev. Av. # ICs Av. acc. St. dev.

Auction 97.00% 3.7% 4 - -

NetBill 94.65% 2.5% 9 66.81% 0.24%

The average time taken by DPML are 0.435 hours for auction and 1.875 hours
for NetBill on a Pentium M 2.00 GHz machine. The average time taken by the
α-algorithm is under one minute for both datasets.

The α-algorithm was not applied to the auction protocol since it has no way of
testing the satisfaction of the deadline, given that it considers an atomic model
of the activities.

As can be seen, DPML outperforms the α-algorithm on NetBill in terms of
accuracy, even if at the expense of a high computational cost. In order to find
out how scalable is our approach, we run a series of experiments with increasing
number of traces, from 500 up to 2000. The execution times on a machine with a
Core Duo 1.86 GHz are shown in Figure 4. The graph shows that the execution
time increases nearly linearly with the number of traces.

Fig. 4. Scalability of the DPML

5 Related Works

The integrity constraints presented in this paper are inspired to the integrity
constraints of the SCIFF language [9,5]. For example, IC (2) would be written
in the SCIFF language as

144 E. Lamma et al.

H(a(bob), T) ∧ T < 10
→E(b(alice), T 1) ∧ T < T 1

∨
EN(c(mary), T 1) ∧ T < T 1 ∧ T 1 < T + 10

(8)

where H stands for “happened”, E for “expected to happen” and EN for “ex-
pected not to happen”.

The SCIFF language allows for much more complex ICs than the ones consid-
ered in this paper and is equipped with an abductive proof procedure for testing
the compliance of a trace. In particular, the SCIFF language allows for the com-
bination of variables with different quantification in the same head disjunct. We
focused on a subset for its nice computational properties.

[2] introduced the idea of applying Process Mining to workflow management.
The authors propose an approach for inducing a process representation in the
form of a directed graph encoding the precedence relationships.

[15] presents the α-algorithm for inducing Petri nets from data and iden-
tifies the class of models for which the approach is guaranteed to work. The
α-algorithm is based on the discovery of binary relations in the log, such as the
“follows” relation.

[4] is a recent work where a process model is induced in the form of a disjunc-
tion of special graphs called workflow schemes.

We differ from all of these works in three respects. First, we learn from positive
and negative traces, rather than from positive traces only. Second, we use a rep-
resentation that is declarative rather than procedural as Petri nets are, without
sacrificing expressiveness. For example we can model concurrency and synchro-
nization among activities. Third, we can take into account attributes of events,
such as in the auction protocol where we check that deadlines are respected.

Other works deal with the learning of integrity constraints, in particular
[10,6,17]. However, all of these works learn integrity constraints in the form
of clauses, that are less expressive than our formalism.

6 Conclusions and Future Works

We have presented an approach for performing Process Mining by using ILP
techniques. The approach introduces a new language that extends the one of
disjunctive clauses and that can be used to test the compliance of a trace by
simply using a Prolog interpreter. A subsumption relation for the new language
is introduced together with a refinement operator.

The similarity with clausal logic allows the use of the ICL algorithm for learn-
ing process models. Two experiments have been performed on synthetic data
generated from two models of interaction protocols: a sealed bid auction and
the NetBill protocol. A good accuracy has been achieved in both experiments.
The accuracy on NetBill is higher than the one of the α-algorithm on the same
dataset.

Applying Inductive Logic Programming to Process Mining 145

In the future, we plan to test the system on real world process logs in order
to have a more accurate test of the effectiveness of the approach.

Acknowledgments

This work has been partially supported by the PRIN 2005 project “Specifica-
tion and verification of agent interaction protocols” and by the FIRB project
“TOCAI.IT”.

References

1. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3(2), 119–153 (1995)

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

3. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

4. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

5. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive inter-
pretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS,
vol. 2829, Springer, Heidelberg (2003)

6. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shi-
nohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, Springer, Heidelberg
(1995)

7. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, Springer, Heidelberg (2006)

8. Clark, K.L.: Negation as failure. In: Logic and Databases, Plenum Press, New York
(1978)

9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: The SCIFF framework. In: ACM
Transactions on Computational Logics (accepted for publication, 2007)

10. Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146
(1997)

11. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput 9(3/4), 335–364
(1991)

12. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proceedings of the First International Conference on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM 1996), London, April
1996, pp. 75–90 (1996)

13. Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Pro-
ceedings of the First USENIX Workshop on Electronic Commerce, New York (July
1995)

146 E. Lamma et al.

14. Socs protocol repository,
http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/index.jsp

15. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

16. Prom framework, http://is.tm.tue.nl/∼cgunther/dev/prom/
17. Jorge, A., Brazdil, P.: Integrity constraints in ilp using a monte carlo approach. In:

ILP 1996. LNCS, vol. 1314, pp. 229–244. Springer, Heidelberg (1997)

http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/index.jsp
http://is.tm.tue.nl/~cgunther/dev/prom/

A Refinement Operator Based Learning

Algorithm for the ALC Description Logic

Jens Lehmann1,� and Pascal Hitzler2,��

1 Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany

lehmann@informatik.uni-leipzig.de
2 Universität Karlsruhe (TH), AIFB Institute

D-76128 Karlsruhe, Germany
hitzler@aifb.uni-karlsruhe.de

Abstract. With the advent of the Semantic Web, description logics
have become one of the most prominent paradigms for knowledge repre-
sentation and reasoning. Progress in research and applications, however,
faces a bottleneck due to the lack of available knowledge bases, and it is
paramount that suitable automated methods for their acquisition will be
developed. In this paper, we provide the first learning algorithm based
on refinement operators for the most fundamental description logic ALC.
We develop the algorithm from thorough theoretical foundations and re-
port on a prototype implementation.

1 Introduction

The Semantic Web is gaining momentum. Semantic Technologies, based on the
same underlying principles, are being applied in adjacent areas such as Software
Engineering and Content Management, and industrial interest is rising rapidly.
Fundamental to these approaches is the modelling of knowledge by means of
ontologies, and the single most popular paradigm for this is by using the Web
Ontology Language OWL,1 which has been recommended by the World Wide
Web Consortium (W3C) since 2004.

Progress in research and applications, however, faces a bottleneck due to the
lack of available OWL knowledge bases. Considerable effort is therefore currently
being invested into developing automated means for the acquisition of ontolo-
gies. Most of the currently pursued approaches, however, neglect the expressive
power of OWL and are only capable of learning inexpressive ontologies, such
as taxonomic hierarchies. As such, they fail by far in leveraging the potential
inherent in the expressive features of the Web Ontology Language.

� The first author acknowledges support by the German Federal Ministry of Education
and Research (BMBF) under the SoftWiki project (grant 01 ISF02 B).

�� The second author acknowledges support by the German Federal Ministry of Ed-
ucation and Research (BMBF) under the SmartWeb project (grant 01 IMD01 B)
and by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.

1 http://www.w3.org/2004/OWL

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 147–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 J. Lehmann and P. Hitzler

From a logical perspective, OWL is basically an expressive description logic
(DL) [1]. It is therefore natural to attempt an adaptation of logic-based ap-
proaches to machine-learning for automated ontology acquisition. Inspired by
the success of Inductive Logic Programming (ILP), we pursue the transfer of
ILP methods [13] to DLs, and in this paper we report on a resulting learning
algorithm. Our approach is based on a thorough theoretical analysis of the po-
tential and limitations of refinement operators for DLs. We make the following
contributions:

1. development of a refinement operator, which conforms to theoretical findings
2. design of an algorithm handling the unavoidable limitations of this operator
3. provision of a preliminary evaluation

The algorithm was created with extensibility to additional (non-ALC) con-
cept constructors, e.g. number restrictions, in mind. In contrast to previous
approaches [6,7,8], we pay more attention to finding simple, non-overfitting so-
lutions of the learning problem.

The paper is structured as follows. After some preliminaries in Section 2, we
introduce our refinement operator in Section 3 and show that it conforms to the
desired theoretical properties. In Section 4 we extend this refinement operator to
a learning algorithm. In Section 5, we report on our prototype implementation
and preliminary evaluation. We discuss related work in Section 6 and conclude
in Section 7. Proofs had to be omitted for lack of space, but can be found in the
technical report [10].

2 Preliminaries

2.1 Description Logics

Description logics represent knowledge in terms of objects, concepts, and roles.
Objects correspond to constants, concepts to unary predicates, and roles to bi-
nary predicates in first order logic. In DL systems information is stored in a
knowledge base, which is a set of axioms. It is divided in (at least) two parts:
TBox (terminology) and ABox (assertions). The ABox contains assertions about
objects. It relates objects to concepts and roles. The TBox describes the termi-
nology by relating concepts and roles.

We briefly introduce the ALC description logic, which is the target language
of our learning algorithm and refer to [1] for further background on descrip-
tion logics. As usual in logics, interpretations are used to assign a meaning to
syntactic constructs. Let NI denote the set of objects, NC denote the set of
atomic concepts, and NR denote the set of roles. An interpretation I consists of
a non-empty interpretation domain ΔI and an interpretation function ·I , which
assigns to each object a ∈ NI an element of ΔI , to each concept A ∈ NC a set
AI ⊆ ΔI , and to each role r ∈ NR a binary relation rI ⊆ ΔI × ΔI . Interpre-
tations are extended to concepts as shown in Table 1, and to other elements of
a knowledge base in a straightforward way. An interpretation, which satisfies an

A Refinement Operator Based Learning Algorithm 149

Table 1. ALC syntax and semantics

construct syntax semantics

atomic concept A AI ⊆ ΔI

role r rI ⊆ ΔI × ΔI

top � ΔI

bottom ⊥ ∅
conjunction C � D (C � D)I = CI ∩ DI

disjunction C � D (C � D)I = CI ∪ DI

negation ¬C (¬C)I = ΔI \ CI

existential ∃r.C (∃r.C)I = {a |
∃b.(a, b) ∈ rI and b ∈ CI}

universal ∀r.C (∀r.C)I = {a |
∀b.(a, b) ∈ rI implies b ∈ CI}

axiom (set of axioms) is called a model of this axiom (set of axioms). An ALC
concept is in negation normal form if negation only occurs in front of concept
names.

If C and D are concepts, then C � D and C ≡ D are terminological axioms.
The former axioms are called inclusions and the latter equalities. An equality
whose left hand side is an atomic concept is a concept definition.

It is the aim of inference algorithms to extract implicit knowledge from a given
knowledge base. Standard reasoning tasks include instance checks, retrieval and
subsumption. We will only explicitly define the latter. Let C, D be concepts and
T a TBox. C is subsumed by D, denoted by C � D, iff for any interpretation I
we have CI ⊆ DI . C is subsumed by D with respect to T (denoted by C �T D)
iff for any model I of T we have CI ⊆ DI . C is equivalent to D (with respect to
T), denoted by C ≡ D (C ≡T D), iff C � D (C �T D) and D � C (D �T C).
C is strictly subsumed by D (with respect to T), denoted by C � D (C �T D),
iff C � D (C �T D) and not C ≡ D (C ≡T D).

2.2 Learning in Description Logics Using Refinement Operators

Definition 1 (learning problem in description logics). Let a concept name
Target, a knowledge base K (not containing Target), and sets E+ and E−

with elements of the form Target(a) (a ∈ NI) be given. The learning problem
is to find a concept C such that Target does not occur in C and for K′ =
K ∪ {Target ≡ C} we have K′ |= E+ and K′ �|= E−.

By Occam’s razor [3] simple solutions of the learning problem are to be pre-
ferred over more complex ones, because they have a higher predictive quality.
We measure simplicity as the length of a concept, which is defined in a straight-
forward way, namely as the sum of the numbers of concept, role, quantifier, and
connective symbols occurring in the concept.

The goal of learning is to find a correct concept with respect to the examples.
This can be seen as a search process in the space of concepts. A natural idea

150 J. Lehmann and P. Hitzler

is to impose an ordering on this search space and use operators to traverse it,
which is the purpose of refinement operators. Intuitively, downward (upward)
refinement operators construct specialisations (generalisations) of hypotheses.

A quasi-ordering is a reflexive and transitive relation. Let S be a set and �
a quasi-ordering on S. In the quasi-ordered space (S, �) a downward (upward)
refinement operator ρ is a mapping from S to 2S , such that for any C ∈ S we
have that C′ ∈ ρ(C) implies C′ � C (C � C′). C′ is called a specialisation
(generalisation) of C. Quasi-orderings can be used for searching in the space
of concepts. As ordering we can use subsumption. If a concept C subsumes a
concept D (D � C), then C covers all examples, which are covered by D, which
makes subsumption a suitable order.

Definition 2. A refinement operator in the quasi-ordered space (ALC, �T) is
called an ALC refinement operator.

We need to introduce some notions for refinement operators. A refinement chain
of an ALC refinement operator ρ of length n from a concept C to a concept D is
a finite sequence C0, C1, . . . , Cn of concepts, such that C = C0, C1 ∈ ρ(C0), C2 ∈
ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This refinement chain goes through E iff
there is an i (1 ≤ i ≤ n) such that E = Ci. We say that D can be reached from
C by ρ if there exists a refinement chain from C to D. ρ∗(C) denotes the set of
all concepts, which can be reached from C by ρ. ρm(C) denotes the set of all
concepts, which can be reached from C by a refinement chain of ρ of length m.
If we look at refinements of an operator ρ, we will often write C �ρ D instead
of D ∈ ρ(C). If the used operator is clear from the context it is usually omitted,
i.e. we write C � D.

We will introduce the concept of weak equality of concepts, which is similar
to equality of concepts, but takes into account that the order of elements in
conjunctions and disjunctions is not important. We say that the concepts C and
D are weakly (syntactically) equal, denoted by C
 D iff they are equal up to
permutation of arguments of conjunction and disjunction. Two sets S1 and S2 of
concepts are weakly equal if for any C1 ∈ S1 there is a C′

1 ∈ S2 such that C1
 C′
1

and vice versa. Weak equality of concepts is coarser than equality and finer than
equivalence (viewing the equivalence, equality, and weak equality of concepts as
equivalence classes). Refinement operators can have certain properties, which
can be used to evaluate their usefulness for learning hypothesis.

Definition 3. An ALC refinement operator ρ is called

– (locally) finite iff ρ(C) is finite for any concept C.
– redundant iff there exists a refinement chain from a concept C to a concept

D, which does not go through some concept E and a refinement chain from
C to a concept weakly equal to D, which does go through E.

– proper iff for all concepts C and D, D ∈ ρ(C) implies C �≡ D.
– ideal iff it is finite, complete (see below), and proper.

An ALC downward refinement operator ρ is called

A Refinement Operator Based Learning Algorithm 151

– complete iff for all concepts C, D with C �T D we can reach a concept E
with E ≡ C from D by ρ.

– weakly complete iff for all concepts C �T � we can reach a concept E with
E ≡ C from � by ρ.

The corresponding notions for upward refinement operators are defined dually.

3 Designing a Refinement Operator

To design a suitable operator, we first look at theoretical limitations. The follow-
ing theorem from [9] provides a full analysis of the properties of ALC refinement
operators:

Theorem 1 (Property Theorem). Considering the properties completeness,
weak completeness, properness, finiteness, and non-redundancy the following are
maximal sets of properties (in the sense that no other of the mentioned properties
can be added) of ALC refinement operators (see [9] for details):

1. {weakly complete, complete,finite}
2. {weakly complete, complete, proper}
3. {weakly complete,non-redundant,finite}
4. {weakly complete,non-redundant, proper}
5. {non-redundant,finite, proper}

Incomplete operators are not interesting, because we may then be unable to find
possible solutions, so we can ignore the fifth property combination. We can see
from the other combinations, that we can have either finity or properness as a
property of an ALC refinement operator – but not both at the same time. Since
we are able to handle infinity quite well, as we will describe in Section 4, we
will aim for properness. Our learning algorithm will perform a top-down search,
so the fourth combination seems to be desirable, because weak completeness is
sufficient in this case. However, an incomplete, but weakly complete operator
cannot support some of the features which we consider essential in our learning
algorithm. Hence, we decided to use the second combination.

We proceed as follows: First, we define a refinement operator and prove its
completeness. We then extend it to a complete and proper operator. Section 4
will show how we handle the problems of redundancy and infinity in the learning
algorithm.

For each A ∈ NC , we define nb↓(A) = {A′ | A′ ∈ NC , there is no A′′ ∈
NC with A′ �T A′′ �T A}. nb↑(A) is defined analogously. In the sequel, we will
analyse the refinement operator ρ↓ given by:

ρ↓(C) =

{
{⊥} ∪ ρ′↓(C) if C = �
ρ′↓(C) otherwise

152 J. Lehmann and P. Hitzler

ρ′
↓(C) =

�������������������������
������������������������

∅ if C = ⊥
{C1 � · · · � Cn | Ci ∈ M (1 ≤ i ≤ n)} if C = �
{A′ | A′ ∈ nb↓(A)} ∪ {A � D | D ∈ ρ′

↓(�)} if C = A (A ∈ NC)

{¬A′ | A′ ∈ nb↑(A)} ∪ {¬A � D | D ∈ ρ′
↓(�)} if C = ¬A (A ∈ NC)

{∃r.E | E ∈ ρ′
↓(D)} ∪ {∃r.D � E | E ∈ ρ′

↓(�)} if C = ∃r.D

{∀r.E | E ∈ ρ′
↓(D)} ∪ {∀r.D � E | E ∈ ρ′

↓(�)} if C = ∀r.D

∪ {∀r.⊥ | D = A ∈ NC and nb↓(A) = ∅}
{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn | if C = C1 � · · · � Cn

D ∈ ρ′
↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn | if C = C1 � · · · � Cn

D ∈ ρ′
↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 � · · · � Cn) � D | D ∈ ρ′
↓(�)}

Fig. 1. Definition of ρ′
↓

where the operator ρ′↓ is defined as in Figure 1. The definition refers to a set M
which is inductively defined as follows: All elements in {A | A ∈ NC , nb↑(A) = ∅}
(= most general atomic concepts), {¬A | A ∈ NC , nb↓(A) = ∅} (= negated most
specific atomic concepts), and {∃r.� | r ∈ NR} are in M . If a concept C is in
M , then ∀r.C with r ∈ NR is also in M .

Proposition 1. ρ↓ is an ALC downward refinement operator.

A distinguishing feature of ρ↓ compared to other refinement operators for learn-
ing concepts in DLs [2,6] is that it makes use of the subsumption hierarchy. This
is useful, since the operator can make use of knowledge contained implicitly in
the TBox. Note that ρ↓ is infinite. The reason is that the set M is infinite and,
furthermore, we put no boundary on the number of elements in the disjunctions,
which are refinements of the top concept.

3.1 Completeness of the Operator

To investigate the completeness of the operator, we define a set S↓ of ALC
concepts in negation normal form as follows:

Definition 4 (S↓). We define S↓ = S′
↓ ∪ {⊥}, where S′

↓ is defined as follows:

1. If A ∈ NC then A ∈ S′
↓ and ¬A ∈ S′

↓.
2. If r ∈ NR then ∀r.⊥ ∈ S′

↓, ∃r.� ∈ S′
↓.

3. If C, C1, . . . , Cm are in S′
↓ then the following concepts are also in S′

↓:
– ∃r.C, ∀r.C, C1 � · · · � Cm, and
– C1 � · · · �Cm if for all i (1 ≤ i ≤ m) Ci is not of the form D1 � · · · �Dn

where all Dj (1 ≤ j ≤ n) are of the form E1 � · · · � Ep.

A Refinement Operator Based Learning Algorithm 153

In S↓, we do not use the � and ⊥ symbols directly and we make a restriction on
disjunctions, i.e. we do not allow that elements of a disjunction are conjunctions,
which in turn only consist of disjunctions. It can be shown that for any ALC
concept C there exists a concept D ∈ S↓ such that D ≡ C.

Lemma 1 (S↓). For any ALC concept C there exists a concept D ∈ S↓ such
that D ≡ C.

This allows us to show weak completeness by proving that every element in S↓
can be reached from � by ρ↓.

Proposition 2 (weak completeness of ρ↓). ρ↓ is weakly complete.

Using this, we can prove completeness (again, we refer to [10] for proofs).

Proposition 3. ρ↓ is complete.

3.2 Achieving Properness

The operator ρ↓ is not proper, for instance it allows the refinement � � ∃r.� �
∀r.A1 (≡ �) where A1 ∈ nb↓(�). Indeed, there is no structural subsumption
algorithm for ALC [1], which indicates that it is hard to define a proper operator
just by syntactic rewriting rules. One could try to modify ρ↓, such that it becomes
proper. Unfortunately, this is likely to lead to incompleteness. Say, we disallow
the refinement step just mentioned and consider the following refinement chain:

� � ∃r.� � ∀r.A1 � ∃r.A2 � ∀r.A1 (A1, A2 ∈ nb↓(�))

If we disallow the first step, we would have to ensure that we can reach ∃r.A2 �
∀r.A1 from �, otherwise the operator is weakly incomplete. In particular, there
can be infinite chains of improper refinements:

� � ∃r.� � ∀r.A1 � ∃r.(∃r.� � ∀r.A1) � ∀r.A1 � . . .

This example illustrates that one would have to allow very complex concepts
to be generated as refinements of the top concept, if one wants to achieve weak
completeness and properness. So, instead of modifying ρ↓ directly, we allow it
to be improper, but consider the closure ρcl

↓ of ρ↓ [2].

Definition 5 (ρcl
↓). ρcl

↓ is defined as follows: D ∈ ρcl
↓ (C) iff there exists a re-

finement chain
C �ρ↓ C1 �ρ↓ . . . �ρ↓ Cn = D

such that C �≡T D and Ci ≡ C for i ∈ {1, . . . , n − 1}.
ρcl
↓ is proper by definition. It also inherits the weak completeness of ρ↓, since we

do not disallow any refinement steps, but only check whether they are improper.
However, it is necessary to show that ρcl

↓ is a meaningful operator, which we
will do in the sequel. We already know that ρ↓ is infinite, so it is clear that we

154 J. Lehmann and P. Hitzler

cannot consider all refinements of a concept at a time. Therefore, in practise we
will always compute all refinements of a concept up to a given length. A flexible
algorithm will allow this length limit to be increased if necessary. Using this
technique, an infinite operator can be handled. However, we have to make sure
that all refinements up to a given length are computable in finite time. To show
this, we need the following lemma.

Lemma 2 (ρ↓ does not reduce length). D ∈ ρ↓(C) implies |D| ≥ |C|.
Furthermore, there are no infinite refinement chains of the form C1 �ρ↓ C2 �ρ↓

. . . with |C1| = |C2| = . . . , i.e. after a finite number of steps we reach a strictly
longer concept.

Proposition 4 (usefulness of ρcl
↓). For any concept C in negation normal

form and any natural number n, the set {D | D ∈ ρcl
↓ (C), |D| ≤ n} can be

computed in finite time.

Due to Proposition 4 we can use ρcl
↓ in a learning algorithm. For computing ρcl

↓
up to n, it is sufficient to apply the operator until a non-equivalent concept is
reached. By a straightforward analysis of the refinement steps, one can show
that in the worst case after O(|NC | · |C|) steps a refinement of greater length
will be reached, which bounds the complexity of computing the closure.

4 The Learning Algorithm

So far, we have designed a complete and proper operator. Unfortunately, such an
operator has to be redundant and infinite by Theorem 1. We will now describe
how to deal with these problems and define the overall learning algorithm.

4.1 Redundancy Elimination

A learning algorithm can be constructed as a combination of a refinement op-
erator, which defines how the search tree can be built, and a search algorithm,
which controls how the tree is traversed. The search algorithm specifies which
nodes have to be expanded. Whenever the search algorithm encounters a node
in the search tree, it could check whether a weakly equal concept already exists
in the search tree. If yes, then this node is ignored, i.e. it will not be expanded
further and it will not be evaluated. This removes all redundancies, since every
concept exists at most once in the search tree.2 We can still reach any concept,
because we have ρcl

↓ (C)
 ρcl
↓ (D) if C
 D, i.e. ρcl

↓ handles weakly equal concepts
in the same way. However, this redundancy elimination approach is computa-
tionally expensive if performed naively. Hence, we considered it worthwhile to
investigate how it can be handled as efficiently as possible.

Note, that we consider weak equality instead of equality here, e.g. we have
A1 �A2 �= A2 �A1, but A1 �A2
 A2 �A1. In conjunctions and disjunctions, we

2 More precisely: For each concept there is at most one representative of the equiva-
lence class of weakly syntactical equal concepts in the search tree which is evaluated.

A Refinement Operator Based Learning Algorithm 155

have the problem that we have to guess which pairs of elements are equal to de-
termine whether two concepts are weakly equal. One way to solve this problem is
to define an ordering over concepts and require the elements of disjunctions and
conjunctions to be ordered accordingly. This eliminates the guessing step and
allows to check weak equality in linear time. There are different ways to define
a linear order � over ALC concepts, and we have shown that it is also possible
to do it in such a way that deciding � for two concepts is polynomial and trans-
forming a concept in negation normal form to � ordered negation normal form,
i.e. elements in conjunctions and disjunctions are ordered with respect to �, can
be done in polynomial time – for brevity we omit the details. It is thus reasonable
to assume that every concept occurring in our search tree can be transformed
to ordered negation normal form with respect to some linear order over ALC
concepts. We can then maintain an ordered set of concepts occurring in the
search tree. Checking weak equality of a concept C with respect to a search tree
containing n concepts will then only require log n comparisons (binary search),
where each comparison needs only linear time. Taking into account the com-
plexity of instance checks (PSPACE for ALC, NEXPTIME for SHOIN (D) and
OWL-DL), which we can avoid (compared to an algorithm without redundancy
check), redundancy elimination can be considered reasonable.

4.2 Creating a Full Learning Algorithm

Learning concepts in DLs is a search process. In our proposed learning algorithm,
the refinement operator ρcl

↓ is used for building the search tree, while a heuristics
decides which nodes to expand. To define a search heuristics for our learning
algorithm, we need some notions to be able to express what we consider a good
concept.

Definition 6 (quality). Let K be a knowledge base, E− the set of negative
examples, and E+ the set of positive examples of a learning problem. The quality
of a concept C is a function, which maps a concept to an element of Q with
Q = {0, . . . , −|E−|} ∪ {tw}, defined by q(C) = tw if there is an e ∈ E+ with
K ∪ {C} �|= e and q(C) = −|{e | e ∈ E−and K ∪ {C} |= e}| otherwise.

The quality of a concept is ”tw” if it is too weak, i.e. it does not cover all positive
examples. In all other cases, we assign a number n with n ≥ 0 to a concept, which
is the number of negative examples covered.

As mentioned before, we want to tackle the infinity of the operator by con-
sidering only refinements up to some length n at a given time. We call n the
horizontal expansion of a node. It is a node specific upper bound on the length of
child concepts, which can be increased dynamically by the algorithm during the
learning process. To deal with this, we formally define a node in a search tree to
be a quadruple (C, n, q, b), where C is an ALC concept, n ∈ N is the horizontal
expansion, q ∈ Q ∪ {-} is the quality (- stands for non-evaluated quality), and
b ∈ {true, false} is a boolean marker for the redundancy of a node.

156 J. Lehmann and P. Hitzler

The search heuristics selects the fittest node in the search tree at a given
time. We define fitness as a lexicographical order over quality and horizontal
expansion.

Definition 7 (fitness). Let N1 = (C1, n1, q1, b1) and N2 = (C2, n2, q2, b2) be
two nodes with defined quality (q1, q2 �= −, tw). N1 is fitter than N2, denoted by
N2 ≤f N1 iff q2 < q1 or q1 = q2 and n1 ≤ n2.

Note, that we use horizontal expansion instead of concept length as second crite-
rion, which makes the algorithm more flexible in searching less explored areas of
the search space. More sophisticated ways of ordering concepts are also possible,
e.g. tradeoffs between quality and horizontal expansion. Such fitness heuristics
enable the algorithm to handle noise. The fitness function can be defined inde-
pendently of the core learing algorithm.

We have now introduced all necessary notions to specify the complete learning
algorithm, given in Algorithm 1. checkRed is the redundancy check function and
transform the function to transform a concept to ordered negation normal form.

Algorithm 1. learning algorithm
Input: horizExpFactor in]0,1]
ST (search tree) is set to the tree consisting only of the root node1

(�, 0, q(�), false)
minHorizExp = 02

while ST does not contain a correct concept do3

choose N = (C, n, q, b) with highest fitness in ST4

expand N up to length n + 1, i.e. :5

begin6

add all nodes (D, n, −, checkRed(ST, D)) with D ∈ transform(ρcl
↓ (C))7

and |D| = n + 1 as children of N
evaluate created non-redundant nodes8

change N to (C, n + 1, q, b)9

end10

minHorizExp = max(minHorizExp, �horizExpFactor ∗ (n + 1))�)11

while there are nodes with defined quality and horiz. expansion smaller12

minHorizExp do
expand these nodes up to minHorizExp13

Return a correct concept in ST14

We see, that the usual expansion in a search algorithm is replaced by a one
step horizontal expansion. If we only expand the fittest node, we may not explore
large parts of the search space. In order to avoid this, a minimum horizontal
expansion factor is used, which specifies that all nodes have to be expanded at
least up to this length. This factor allows us to control the tradeoff between
expanding only the fittest nodes and exploring other parts of the search space.

Correctness of the algorithm can be shown:

A Refinement Operator Based Learning Algorithm 157

Fig. 2. Michalski trains

Proposition 5 (correctness). If a learning problem has a solution, then Al-
gorithm 1 terminates and computes a correct solution of the learning problem.

5 Preliminary Evaluation

We want to illustrate our algorithm using Michalski’s trains [12] as an example.
The data describes different features of trains, e.g. which cars are appended to a
train, whether they are short or long, closed or open, jagged or not, which shapes
they contain and how many of them. The positive examples are the trains on the
left and the negative examples are the trains on the right. Thus, the task of the
learner is to find characteristics of all the left trains, which none of the right trains
has. The learning algorithm first explores the concepts � and Train, which cover
all examples. Other atomic concepts are too weak to be considered for further
exploration. The exploration of the top concept leads to ∃hasCar.�, which is
then expanded to ∃hasCar.Closed. This covers all positives and two negatives.
The heuristic picks this node and extends it to ∃hasCar.(Closed�Short), which
is a possible (and shortest) solution for the problem.

Doubtless, there is a lack of evaluation standards in ontology learning from ex-
amples. In order to overcome this problem, we converted the background knowl-
edge of several existing learning problems to OWL ontologies. Besides the de-
scribed train problem, we also investigated the problems of learning arches [14],
learning poker hands, and understanding the moral reasoning of humans. The
two latter examples were taken from the UCI Machine Learning repository3.
For the poker example, we defined two goals: learning the definition of a pair
and of a straight. Similarly, the moral reasoner examples were divided into two
learning tasks: the original one, where the intended solution is quite short, and
a problem, where we removed an important intermediate concept, such that the
smallest possible solution became more complex.

The arch problem is small in terms of size and complexity of the background
knowledge. The poker example is larger in terms of size, but still not very com-
plex. The moral reasoner, however, is an expressive ontology, which we derived
from a theory given as logic program. The solutions of the examples cover a range
of different concept constructors and are of varying length and complexity.

3 http://www.ics.uci.edu/˜mlearn/MLRepository.html

158 J. Lehmann and P. Hitzler

For all test runs we used a (non-optimised) horizontal expansion factor of 0.6.
As a reasoner we used Pellet4 (version 1.4RC1), which was connected to the
learning program using the DIG 1.1 interface5 on a 1.4 GHz CPU machine. The
only system we could use for comparison is YinYang [8]. The system in [5] is no
longer available and the approach in [2] was not fully implemented.

Table 2 summarises the results we obtained. In all cases, our implementation
– called DL-Learner – was able to learn the shortest correct definition (which
coincides with the intended solution of these problems). YinYang produces longer
solutions and could not solve the second poker problem (it produces an error
after trying to compute most specific concepts for some time). It generated
an incorrect answer for both moral reasoner problems. The percentage of time
spent for reasoner requests increases with the complexity and size of background
knowledge and the number of examples (it is > 99% for the moral reasoner
problems), which shows that minimizing the number of reasoner requests, e.g.
by redundancy elimination, is an important issue.

Table 2. Evaluation results for DL-Learner and YinYang

problem axioms, concepts, roles DL-Learner YinYang
objects, examples runtime length correct runtime length correct

trains 252, 8, 5, 50, 10 1.1s 5 100% 2.3s 8 100%
arches 71, 6, 5, 19, 5 4.6s 9 100% 1.5s 23 100%
moral (simple) 2176, 43, 4, 45, 43 17.7s 3 100% 205.3s 69 67.4%
moral (complex) 2107, 40, 4, 45, 43 88.1s 8 100% 181.4s 70 69.8%
poker (pair) 1335, 2, 6, 311, 49 7.7s 5 100% 17.1s 43 100%
poker (straight) 1419, 2, 6, 347, 55 35.6s 11 100% - - -

6 Related Work

An interesting paper close to our work is [2]. It suggests a refinement operator for
the ALER description logic. They also investigate some theoretical properties
of refinement operators. As we have done with the design of ρ↓, they favour
the use of a downward refinement operator to enable a top-down search. The
authors use ALER normal form (see the paper for a detailed description), which
is easier to handle than negation normal form, because ALER is not closed
under boolean operations. As a consequence, they obtain a simpler refinement
operator, for which it is not clear how it could be extended to more expressive
DLs. Our operator, in contrast, lends itself much easier to such extensions. We
also deal quite differently with infinity, show how the subsumption hierarchy
of atomic concepts can be used, and describe how redundancy can be avoided
efficiently.

A second area of ongoing related work is described in [6,7,8]. They take a
different approach for solving the learning problem by using approximated MSCs

4 http://pellet.owldl.com
5 http://dl.kr.org/dig/

A Refinement Operator Based Learning Algorithm 159

(most specific concepts). A problem of these algorithms is that they tend to
produce unnecessarily long concepts. One reason is that MSCs for ALC and
more expressive languages do not exist and hence can only be approximated.
Previous work [4,5] in learning in DLs has mostly focused on approaches using
least common subsumers, which face this problem to an even larger extent.

In our approach, we also cannot guarantee that we obtain the shortest possible
solution of a learning problem. However, the learning algorithm was carefully
designed to produce short solutions. The produced solutions will be close to the
shortest solution in negation normal form and, thus, overfitting is unlikely.

Another related area of research are approaches for learning in the hybrid
language AL-log [11], which combines ALC with the function free Horn clause
language Datalog.

7 Conclusions and Further Work

To the best of our knowledge, our work presents the first refinement operator
based learning algorithm for expressive DLs which are closed under boolean
operations.6 It is based on thorough theoretical investigations concerning the
potential of using refinement operators for DLs, and we have shown formally
that our operator satisfies the desirable properties which are achievable. We
also showed how the problems of redundancy and infinity can be solved in a
satisfiable manner, allowing us to specify a learning algorithm which we proved
to be correct. We implemented the algorithm and an evaluation showed the
feasibility of our approach.

Future work will focus on increasing the expressiveness of the learned lan-
guage, integrating the learning algorithm in an ontology editor, creating bench-
mark datasets, and testing on real world data sets.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59.
Springer, Heidelberg (2000)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In:
Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, pp. 201–204.
Morgan Kaufmann, San Francisco (1990)

4. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 754–760. AAAI Press, Menlo Park (1993)

6 To be precise, [8] also uses refinement operators, but not as centrally as in our
approach – see Section 6.

160 J. Lehmann and P. Hitzler

5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and
experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of
the 4th International Conference on Principles of Knowledge Representation and
Reasoning, may 1994, pp. 121–133. Morgan Kaufmann, San Francisco (1994)

6. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455.
Springer, Heidelberg (2004)

7. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in ex-
pressive description logics. In: ECML 2004. LNCS (LNAI), vol. 3201, Springer,
Heidelberg (2004)

8. Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept
learning in the semantic web. In: Proceedings of the 18th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, Bari, Italy, June 2005, pp. 370–379 (2005)

9. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
ALC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2007)

10. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for
the ALC description logic. In: Technical report, University of Leipzig (2007),
http://www.jens-lehmann.org

11. Lisi, F.A., Malerba, D.: Ideal refinement of descriptions in AL-log. In: Horváth, T.,
Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer,
Heidelberg (2003)

12. Michalski, R.S.: Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2(4), 349–361 (1980)

13. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Pro-
gramming. LNCS. Springer, Heidelberg (1997)

14. Winston, P.: Learning structural descriptions from examples. In: Winston, P. (ed.)
The Psychology of Computer Vision, pp. 157–209. McGraw-Hill, New York (1975)

http://www.jens-lehmann.org

Foundations of Refinement Operators for

Description Logics

Jens Lehmann1,� and Pascal Hitzler2,��

1 Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany

lehmann@informatik.uni-leipzig.de
2 Universität Karlsruhe (TH), AIFB Institute

D-76128 Karlsruhe, Germany
hitzler@aifb.uni-karlsruhe.de

Abstract. In order to leverage techniques from Inductive Logic Pro-
gramming for the learning in description logics (DLs), which are the
foundation of ontology languages in the Semantic Web, it is important
to acquire a thorough understanding of the theoretical potential and lim-
itations of using refinement operators within the description logic para-
digm. In this paper, we present a comprehensive study which analyses
desirable properties such operators should have. In particular, we show
that ideal refinement operators in general do not exist, which is indica-
tive of the hardness inherent in learning in DLs. We also show which
combinations of desirable properties are theoretically possible, thus pro-
viding an important step towards the definition of practically applicable
operators.

1 Introduction

With the advent of the Semantic Web and Semantic Technologies, ontologies are
becoming one of the most prominent paradigms for knowledge representation and
reasoning. However, recent progress in the field faces a lack of available ontolo-
gies due to the fact that engineering such ontologies constitutes a considerable
investment of resources. Methods for the automated acquisition of ontologies
are therefore required. In this article, we develop theoretical foundations for the
creation of such methods.

In 2004, the World Wide Web Consortium (W3C) recommended the Web
Ontology Language OWL1 as a standard for modelling ontologies on the Web.
In the meantime, many studies and applications using OWL have been reported
in research, many of which go beyond Internet usage and employ the power of
� The first author acknowledges support by the German Federal Ministry of Education

and Research (BMBF) under the SoftWiki project (grant 01 ISF02 B).
�� The second author acknowledges support by the German Federal Ministry of Edu-

cation and Research (BMBF) under the SmartWeb project (grant 01 IMD01 B) and
by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.

1 http://www.w3.org/2004/OWL/

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 161–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 J. Lehmann and P. Hitzler

ontological modelling in other fields like software engineering, knowledge man-
agement, and cognitive systems.

In essence, OWL coincides with the description logic SHOIN (D) and is thus
a knowledge representation formalism based on first-order logic. In order to
leverage machine-learning approaches for the acquisition of OWL ontologies, it
is therefore required to develop methods and tools for the learning in description
logics. To date, only few investigations have been carried out on this topic, which
can be attributed to the fact that description logics (DLs) have only recently
become a major paradigm in knowledge representation and reasoning.

In this paper, we investigate the applicability of methods from Inductive Logic
Programming (ILP) for the learning in description logic knowledge bases. We
are motivated by the success of ILP methods and believe that similar results can
be achieved for DLs.

Central to the usual ILP approach are the so-called refinement operators which
are used to traverse the search space, and many approaches indeed hinge on
the definition of a suitable such operator. Theoretical investigations on ILP re-
finement operators have identified desirable properties for them to have, which
impact on their performance. These properties thus provide guidelines for the
definition of suitable operators. It turns out, however, that for hard learning set-
tings there are theoretical limitations on the properties a refinement operator can
have. A corresponding general analysis therefore provides a clear understanding
of the difficulties inherent in a learning setting, and also allows to derive direc-
tions for researching suitable operators.

In this paper we therefore give a full analysis of properties of refinement op-
erators for description logics. To the best of our knowledge, such a complete
analysis has not been done before, but the need for this investigation was ex-
pressed in [6,7]. The main contribution of this article is to derive a fundamental
theorem about properties of refinement operators in DLs. This can serve as the
foundation for the design of concrete refinement operators, which are used for
induction – with potential applications in other areas of Machine Learning like
clustering and data mining.

The paper is structured as follows. In Section 2 we will give a brief intro-
duction to description logics. Section 3 formally describes the learning problem
in description logics. Refinement operators and their properties are introduced.
The main section is Section 4, which contains the results we obtained. We will
fully analyse all combinations of interesting properties of refinement operators.
This means we will show which combinations of properties are possible, i.e. for
which combinations a refinement operator with these properties exists. We make
only basic assumptions with respect to the description logic we are looking at,
to cover as many description logics as possible. In Section 5 we discuss related
work, in particular the relation to refinement operators in the area of traditional
Inductive Logic Programming. Finally, in Section 6 we summarise our work and
draw conclusions.

Some proofs are omitted for lack of space. They can be found in a separate
technical report [12].

Foundations of Refinement Operators for Description Logics 163

2 Description Logics

Description logics represent knowledge in terms of objects, concepts, and roles.
Objects correspond to constants, concepts to unary predicates, and roles to
binary predicates in first order logic. In description logic systems information is
stored in a knowledge base, which is a set of axioms. It is divided in (at least) two
parts: TBox and ABox. The ABox contains assertions about objects. It relates
objects to concepts and roles. The TBox describes the terminology by relating
concepts and roles.

We briefly introduce the ALC description logic, which is the target language
of our learning algorithm and refer to [1] for further background on description
logics. Syntax and semantic of ALC concept constructors is shown in Table 1.
As usual in logics, interpretations are used to assign a meaning to syntactic con-
structs. Let NI denote the set of objects, NC denote the set of atomic concepts,
and NR denote the set of roles. An interpretation I consists of a non-empty in-
terpretation domain ΔI and an interpretation function ·I , which assigns to each
object a ∈ NI an element of ΔI , to each concept A ∈ NC a set AI ⊆ ΔI , and to
each role r ∈ NR a binary relation rI ⊆ ΔI × ΔI . Interpretations are extended
to concepts as shown in Table 1, and to other elements of a knowledge base in a
straightforward way. An interpretation, which satisfies an axiom (set of axioms)
is called a model of this axiom (set of axioms). An ALC concept is in negation
normal form if negation only occurs in front of concept names. SHOIN (D), the
description language corresponding to OWL (to be precise it corresponds to the
dialect OWL DL), is an extension of ALC. The results presented in this paper
are general, i.e. they hold for all reasonable expressive description logics. (The
criteria these languages have to fulfil are described later in Definition 3.)

It is the aim of inference algorithms to extract implicit knowledge from a given
knowledge base. Standard reasoning tasks include instance checks, retrieval and
subsumption. We will only explicitly define the latter. Let C, D be concepts and
T a TBox. C is subsumed by D, denoted by C � D, iff for any interpretation I
we have CI ⊆ DI . C is subsumed by D with respect to T (denoted by C �T D)

Table 1. ALC syntax and semantics

construct syntax semantics

atomic concept A AI ⊆ ΔI

role r rI ⊆ ΔI × ΔI

top � ΔI

bottom ⊥ ∅
conjunction C � D (C � D)I = CI ∩ DI

disjunction C � D (C � D)I = CI ∪ DI

negation ¬C (¬C)I = ΔI \ CI

existential ∃r.C (∃r.C)I = {a |
∃b.(a, b) ∈ rI and b ∈ CI}

universal ∀r.C (∀r.C)I = {a |
∀b.(a, b) ∈ rI implies b ∈ CI}

164 J. Lehmann and P. Hitzler

iff for any model I of T we have CI ⊆ DI . C is equivalent to D (with respect to
T), denoted by C ≡ D (C ≡T D), iff C � D (C �T D) and D � C (D �T C).
C is strictly subsumed by D (with respect to T), denoted by C � D (C �T D),
iff C � D (C �T D) and not C ≡ D (C ≡T D).

3 Learning in Description Logics Using Refinement
Operators

In this section we will briefly describe the learning problem in description logics.
The process of learning in logics, i.e. finding logical explanations for given data,
is also called inductive reasoning. In a very general setting this means that we
have a logical formulation of background knowledge and some observations. We
are then looking for ways to extend the background knowledge such that we
can explain the observations, i.e. they can be deduced from the modified knowl-
edge. More formally we are given background knowledge B, positive examples
E+, negative examples E− and want to find a hypothesis H such that from H
together with B the positive examples follow and the negative examples do not
follow. It is not required that the same logical formalism is used for background
knowledge, examples, and hypothesis, but often this is the case.

Definition 1 (learning problem in description logics). Let a concept name
Target, a knowledge base K (not containing Target), and sets E+ and E−

with elements of the form Target(a) (a ∈ NI) be given. The learning problem
is to find a concept C such that Target does not occur in C and for K′ =
K ∪ {Target ≡ C} we have K′ |= E+ and K′ �|= E−.

The goal of learning is to find a correct concept with respect to the examples.
This can be seen as a search process in the space of concepts. A natural idea
is to impose an ordering on this search space and use operators to traverse it.
This idea is well-known in Inductive Logic Programming [18], where refinement
operators are widely used to find hypotheses. Intuitively, downward (upward)
refinement operators construct specialisations (generalisations) of hypotheses.

Definition 2. A quasi-ordering is a reflexive and transitive relation. Let S be a
set and � a quasi-ordering on S. In the quasi-ordered space (S, �) a downward
(upward) refinement operator ρ is a mapping from S to 2S, such that for any
C ∈ S we have that C′ ∈ ρ(C) implies C′ � C (C � C′). C′ is called a
specialisation (generalisation) of C.

This idea can be used for searching in the space of concepts. As ordering we can
use subsumption. (Note that the subsumption relation � is a quasi-ordering.) If
a concept C subsumes a concept D (D � C), then C will cover all examples,
which are covered by D. This makes subsumption a suitable order for searching
in concepts. In this section we will analyse refinement operators for concepts
with respect to subsumption and a description language L, which we will call L
refinement operators in the sequel.

Foundations of Refinement Operators for Description Logics 165

Definition 3. Let L be a description language, which allows to express 	, ⊥,
conjunction, disjunction, universal quantification, and existential quantification.
A refinement operator in the quasi-ordered space (L, �) is called an L refinement
operator.

We need to introduce some notions for refinement operators.

Definition 4. A refinement chain of an L refinement operator ρ of length n
from a concept C to a concept D is a finite sequence C0, C1, . . . , Cn of concepts,
such that C = C0, C1 ∈ ρ(C0), C2 ∈ ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This
refinement chain goes through E iff there is an i (1 ≤ i ≤ n) such that E = Ci.
We say that D can be reached from C by ρ if there exists a refinement chain
from C to D. ρ∗(C) denotes the set of all concepts, which can be reached from
C by ρ. ρm(C) denotes the set of all concepts, which can be reached from C by
a refinement chain of ρ of length m.

Definition 5. A concept C is a downward cover of a concept D iff C � D
and there does not exist a concept E with C � E � D. A concept C is an
upward cover of a concept D iff D � C and there does not exist a concept E
with D � E � C.

If we look at refinements of an operator ρ we will often write C �ρ D instead
of D ∈ ρ(C). If the used operator is clear from the context it is usually omitted,
i.e. we write C � D.

We will introduce the concept of weak equality of concepts, which is simi-
lar to equality of concepts, but takes into account that the order of elements
in conjunctions and disjunctions is not important. By equality of two concepts
we mean that the concepts are syntactically equal. Equivalence of two concepts
means that the concepts are logically equivalent (see preliminaries). Weak equal-
ity of concepts is coarser than equality and finer than equivalence (viewing the
equivalence, equality, and weak equality of concepts as equivalence classes).

Definition 6. We say that the concepts C and D are weakly (syntactically)
equal, denoted by C � D iff they are equal up to permutation of arguments of
conjunction and disjunction. Two sets S1 and S2 of concepts are weakly equal if
for any C1 ∈ S1 there is a C′

1 ∈ S2 such that C1 � C′
1 and vice versa.

Refinement operators can have certain properties, which can be used to evaluate
their usefulness for learning hypotheses. These properties are what we investigate
in this paper.

Definition 7. An L refinement operator ρ is called

– (locally) finite iff ρ(C) is finite for any concept C.
– (syntactically) redundant iff there exists a refinement chain from a concept C

to a concept D, which does not go through some concept E and a refinement
chain from C to a concept weakly equal to D, which does go through E.

166 J. Lehmann and P. Hitzler

– proper iff for all concepts C and D, D ∈ ρ(C) implies C �≡ D.
– ideal iff it is finite, complete (see below), and proper.

An L downward refinement operator ρ is called

– complete iff for all concepts C and D with C � D we can reach a concept
E with E ≡ C from D by ρ.

– weakly complete iff for all concepts C with C � 	 we can reach a concept
E with E ≡ C from 	 by ρ.

– minimal iff for all C, ρ(C) contains only downward covers and all its ele-
ments are incomparable with respect to �.

The corresponding notions for upward refinement operators are defined dually.

4 Analysing the Properties of Refinement Operators

In this section we will analyse the properties of refinement operators in descrip-
tion logics. In particular, we are interested in seeing which desired properties
can be combined in a refinement operator and which properties are impossible
to combine. This is interesting for two reasons: The first one is that this gives
us a good impression of how hard (or easy) it is to learn concepts. The second
reason is that this can also serve as a practical guide for designing refinement
operators. Knowing the theoretical limits allows the designer of a refinement
operator to focus on achieving the best possible properties.

ALC refinement operators have been designed in [6,9]. However, a full theo-
retical analysis for DL refinement operators has not been done to the best of our
knowledge (not even for a specific language). Therefore all propositions in this
section are new unless explicitly mentioned otherwise.

As a first property we will briefly analyse minimality of L refinement oper-
ators, in particular the existence of upward and downward covers in ALC. It
is not immediately obvious that e.g. downward covers exist in ALC, because it
could be the case that for any concept C and D with C � D one can always
construct a concept E with C � E � D. However, it is possible to show that
downward covers do exist.

Proposition 1. Downward (upward) covers of 	 (⊥) exist in ALC.

Example 1. The following is a downward cover of the 	 concept:⊔
r∈NR

∃r.	 �
⊔

A∈NC

A

This means that non-trivial minimal operators, i.e. operators which do not map
every concept to the empty set, can be constructed. However, minimality of
refinement steps is not a directly desired goal in general. Minimal operators
are in some languages more likely to lead to overfitting, because they may not
produce sufficient generalisation leaps. This is a problem in languages which are
closed under boolean operations, i.e. ALC and more expressive languages.

Foundations of Refinement Operators for Description Logics 167

Indeed, the following result suggests that minimality may not play a central
role for DL refinement operators, as it is incompatible with (weak) completeness.
A weaker result was claimed to hold, but not proved, in [4]. We formulate our
result for the description logic AL, the concepts of which are inductively defined
as follows: 	, ⊥, ∃r.	, A, ¬A with A ∈ NC , r ∈ NR are AL concepts. If C and
D are AL concepts, then C � D is an AL concept. If C is an AL concept and r
a role, then ∀r.C is an AL concept.

Proposition 2. There exists no minimal and weakly complete AL downward
refinement operator.

In the sequel we analyse desired properties of L refinement operators: complete-
ness, properness, finiteness, and non-redundancy. We show several positive and
negative results, which together yield a full analysis of these properties.

Proposition 3. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and finite L refinement operator.2

In particular, the following operator can be shown to be complete and finite for
any language L we consider:

ρ(C) = {C � 	} ∪ {D | |D| ≤ (number of
	 occurrences in C) and D � C}

Of course, it is obvious that the operator used to prove Proposition 3 is not
useful in practise, since it merely generates concepts without paying attention
to efficiency. However, in [11], we have developed a complete and finite operator,
which was integrated into the Genetic Programming framework and shown to
be useful in a preliminary evaluation.

Let it be noted that in many scenarios it appears to be quite difficult to design
a good complete and finite refinement operator. The reason is that finiteness can
only be achieved by using non-proper refinement steps. We will now show that it
is impossible to define a complete, finite, and proper refinement operator. Such
operators are known as ideal and their non-existence indicates that learning
concepts in sufficiently expressive description logics is hard.

Proposition 4. For any language L, which satisfies the conditions stated in
Definition 3, there does not exist any ideal L refinement operator.

We will give a proof sketch: By contradiction, we assume that there exists an
ideal downward refinement operator ρ. We further assume that there is a role
r ∈ NR. Let ρ() = {C1, . . . , Cn} be a set of refinements of the 	 concept. (This
set has to be finite, since ρ is finite.) Let m be a natural number larger than
the maximum of the quantifier depths (depth of the nesting of quantifications)
of the concepts in ρ(). We construct a concept D as follows:

2 Our result in fact invalidates a claim made in [4] stating that there can be no complete
and finite ALER refinement operator.

168 J. Lehmann and P. Hitzler

D = ∀r.∀r︸ ︷︷ ︸
m−times

.⊥ � ∃r.∃r︸ ︷︷ ︸
(m+1)−times

.	

We have shown, which is the main part of the proof, that there exists no
concept with a quantifier depth smaller than m, which strictly subsumes D and
is not equivalent to 	. This means that C1, . . . , Cn do not subsume D (note
that the properness of ρ implies that C1, . . . , Cn are not equivalent to), so
D cannot be reached by further refinements from any of these concepts. Since
C1, . . . , Cn are the only refinements of 	, it is impossible to reach D from 	.
Thus ρ is not complete, which is what we wanted to show.

However, if the requirement of finiteness is dropped, corresponding operators
exist.

Proposition 5. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and proper L refinement operator.

Propositions 3, 4, and 5 state that for complete refinement operators, which are
usually desirable, one has to sacrifice properness or finiteness. Both combinations
can be useful in practise. As noted above, we have developed a complete and finite
operator in [11], because the finiteness property was important in this context.
However, in [13] we have chosen to develop a complete and proper operator, in
an ILP style top-down learning algorithm, because it is easier to overcome the
problem of an infinite operator in this context.

We will now look at non-redundancy.

Proposition 6. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and non-redundant L refinement operator.

Proof. We will prove the result by showing that each complete operator can
be transformed to a complete and non-redundant operator. Note that in the
following, we will use the role r to create concepts with a certain depth. If
NR does not contain any role, the desired effect can also be achieved by using
conjunctions or disjunctions of 	 and ⊥, but this would render the proof less
readable.

We will use the fact that the set of concepts in L is countably infinite. The
countability already follows from the fact that there is just a finite number of
concepts with a given length. Hence, we can divide the set of all concepts in
finite subsets, where each subset contains all concepts of the same length. We
can then start enumerating concepts starting with the subset of concepts of
length 1, then length 2 etc. Thus, there is a bijective function f : L �→ N, which
assigns a different number to each concept C ∈ L. We denote the inverse function
mapping numbers to concepts by f inv.

Now, we modify a given complete refinement operator ρ, e.g. the operator in
the proof of Proposition 5 (see [12] for details), in the following way: For any
concept C, ρ(C) is modified by changing any element D ∈ ρ(C) with depth d to

D � ∀r. . . . ∀r︸ ︷︷ ︸
d+1 times

.(� · · · � 	︸ ︷︷ ︸
f(C) times

)

Foundations of Refinement Operators for Description Logics 169

We claim that the resulting operator, which we want to denote by ρ′ is com-
plete and non-redundant.

The completeness of ρ′ follows from the completeness of ρ, since the construct
we have added does not change the meaning (it is equivalent to).

To prove non-redundancy, we will first define a function ρinv, which maps
conjunctions, which contain at least one element of the form ∀r. . . . ∀r.(� · · · �
), to concepts:

ρinv(C � ∀r. . . . ∀r. (� · · · �)︸ ︷︷ ︸
n times︸ ︷︷ ︸

element with largest depth

= f inv(n)

We can see that D ∈ ρ′(C) implies ρinv(D) = C, so ρinv allows to invert a
refinement step of ρ′. Furthermore, we have C � D implies ρinv(C) = ρinv(D),
because ρinv treats all weakly equal concepts in the same way.

By the definition of redundancy, there needs to be a concept C and concepts
D1, D2 with D1 � D2, such that there is a refinement chain from C to D1 and
a different refinement chain from C to D2. However, if D1 and D2 are weakly
equal, then ρinv(D1) = ρinv(D1), and by continuing to apply ρinv we will reach
C. Hence the two refinement chains from C to D1 and D2, respectively, cannot
be different. Thus, ρ′ is non-redundant.

Essentially, the proof of Proposition 6 is done by showing how to make complete
operators non-redundant by using the fact that the set of concepts in any con-
sidered language L is countably infinite. We note, however, that under a mild
additional assumption Proposition 6 no longer holds.

Proposition 7. Let ρ be an arbitrary L refinement operator, where L satisfies
the conditions stated in Definition 3, and for any concept C, ρ∗(C) contains
only finitely many different concepts equivalent to ⊥. Then ρ is not complete
and non-redundant.

The assumption made in the proposition is indeed mild: If we have ⊥ ∈ ρ∗(C)
for any concept C, then it is already satisfied. The assumption is made in order
to disallow pure theoretical constructions, as in the proof of Proposition 6, which
use syntactic concept extensions, that do not alter the semantics of a concept,
to ensure non-redundancy. In fact, the result also holds under an even milder,
but more technical assumption, see our report [12].

As a consequence, completeness and non-redundancy usually cannot be com-
bined. It is often desirable to have (weakly) complete operators, but in order
to have a full analysis of L refinement operators we will now also investigate
incomplete operators.

Proposition 8. For any language L, which satisfies the conditions stated in
Definition 3, there exists a finite, proper, and non-redundant L refinement op-
erator.

170 J. Lehmann and P. Hitzler

Proof. The following operator has the desired properties:

ρ(C) =
{{⊥} if C �≡ ⊥

∅ otherwise

It is obviously finite, because it maps concepts to sets of cardinality at most 1.
It is non-redundant, because it only reaches the bottom concept and there exists
no refinement chain of length greater than 2. It is proper, because all concepts,
which are not equivalent to the bottom concept strictly subsume the bottom
concept.

The corresponding upward operator is:

φ(C) =
{{	} if C �≡ 	

∅ otherwise

The arguments for its finiteness, properness, and non-redundancy are analogous
to the downward case.

We can now summarise the results we have obtained so far.

Theorem 1. Let L be a language, which satisfies the conditions stated in De-
finition 3. Considering the properties completeness, properness, finiteness, and
non-redundancy the following are maximal sets of properties (in the sense that
no other of the mentioned properties can be added) of L refinement operators:

1. {complete,finite}
2. {complete, proper}
3. {non-redundant,finite, proper}

All results hold under the mild hypothesis stated in Proposition 7.

A property we have not yet considered is weak completeness. Usually weak com-
pleteness is sufficient, because it allows to search for a good concept starting from
	 downwards (top-down approach) or from ⊥ upwards (bottom-up approach).

We will see that we get different results when considering weak completeness
instead of completeness.

Proposition 9. For any language L, which satisfies the conditions stated in
Definition 3, there exists a weakly complete, non-redundant, and proper L re-
finement operator.

The result just given also holds when properness is replaced by finiteness.

Proposition 10. For any language L, which satisfies the conditions stated in
Definition 3, there exists a weakly complete, non-redundant, and finite L refine-
ment operator.

However, properness and finiteness cannot be achieved at the same time if
weak completeness is imposed. To show this, we can use the same proof as for

Foundations of Refinement Operators for Description Logics 171

Proposition 8, where we have shown that for any finite and proper refinement
operator, there exists a concept, which cannot be reached from 	.

Corollary 1. For any language L, which satisfies the conditions stated in Defin-
ition 3, there exists no weakly complete, finite, and proper L refinement operator.

The result of the previous observations is that, when requiring only weak com-
pleteness instead of completeness, non-redundant operators are possible.3

The following theorem is the result of the full analysis of the desired properties
of L refinement operators.

Theorem 2 (Property Theorem). Let L be a language, which satisfies the
conditions stated in Definition 3. Considering the properties completeness, weak
completeness, properness, finiteness, and non-redundancy the following are max-
imal sets of properties (in the sense that no other of the mentioned properties
can be added) of L refinement operators:

1. {weakly complete, complete,finite}
2. {weakly complete, complete, proper}
3. {weakly complete,non-redundant,finite}
4. {weakly complete,non-redundant, proper}
5. {non-redundant,finite, proper}

All results hold under the mild hypothesis stated in Proposition 7.

Remark 1. Instead of using subsumption (�) as an ordering over concepts, we
can also use subsumption with respect to a TBox T (�T). Theorem 2 will also
hold in this case.

The results also hold if we consider equality (=) instead of weak equality (�)
as equivalence relation on concepts.

5 Related Work

Related work can essentially be divided in two parts. The first part is research
which is directly connected to learning in description logics. The second part is
research about refinement operators in general, often connected with the learning
of logic programs. We will describe both in turn.

In [4] a refinement operator for ALER has been designed to obtain a top-
down learning algorithm for this language. Properties of refinement operators
in this language were discussed and some claims were made, but a full formal
3 Reducing completeness to weak completeness to obtain non-redundancy seems to

be an interesting option for the development of practical operators. However, this
approach is problematic since it is not immediately clear how this idea could be
put into practise. For instance, a weakly complete and non-redundant downward
refinement operator ρ cannot allow refinements of the form C � C � � or C �
C � ρ(�): A weakly complete operator, which allows one of these refinement steps
is also complete and is therefore usually redundant by Proposition 7.

172 J. Lehmann and P. Hitzler

analysis was not performed. Our work generalises the results in this article, re-
futes them in one case, investigates more property combinations, and proves each
claim. In [6,9] learning algorithms for description logics, in particular for the lan-
guage ALC were created, which also make use of refinement operators. Instead
of using the classical approach of combining refinement operators with a search
heuristic, they developed an example driven learning method. [6] stated that an
investigation of the properties of refinement operators in description logics, as we
have done in this article, is required. In [7] downward refinement for ALN was
analysed using a clausal representation of DL concepts. This article also states
that further investigation of the properties of refinement operators in descrip-
tion logics is required. Refinement operators have also been dealt with in hybrid
systems. In [14] ideal refinement for learning AL-log, a language that merges
DATALOG and ALC, was investigated. Based on the notion of B-subsumption,
an ideal refinement operator was created. In [5,10] learning algorithms for de-
scription logics without refinement operators were analysed.

In the area of Inductive Logic Programming [18] considerable efforts have been
made to analyse the properties of refinement operators. Note, that in general us-
ing refinement operators for clauses to learn in description logics is possible, but
usually not a good choice as shown in [4]. However, the theoretical foundations
of refinement operators also apply to description logics, which is why we want
to mention work in this area here.

A milestone in Machine Learning [15] in general was the Model Inference Sys-
tem in [19]. Shapiro describes how refinement operators can be used to adapt
a hypothesis to a sequence of examples. Afterwards, refinement operators be-
came widely used as (part of) a learning method. [20] have found some gen-
eral properties of refinement operators in quasi-ordered spaces. Nonexistence
conditions for ideal refinement operators relating to infinite ascending and de-
scending refinement chains and covers have been developed. This has been
used earlier to show that ideal refinement operators for clauses ordered by θ-
subsumption do not exist [20]. Unfortunately, we could not make use of these
results, because proving properties of covers in description logics without the
restriction to a specific language is likely to be harder than directly proving the
results.

[17] discussed refinement for different versions of subsumption, in particular
weakenings of logical implication. In [16] it was shown how to extend refine-
ment operators to learn general prenex conjunctive normal form. Perfect, i.e.
weakly complete, locally finite, non-redundant, and minimal operators, were
discussed in [2]. Since such operators do not exist for clauses ordered by θ-
subsumption [20], weaker versions of subsumption were considered. This was
later extended to theories, i.e. sets of clauses [8]. A less widely used prop-
erty of refinement operators, called flexibility, was discussed in [3]. Flexibility
essentially means that previous refinements of an operator can influence the
choice of the next refinement. The article discusses how flexibility interacts
with other properties and how it influences the search process in a learning
algorithm.

Foundations of Refinement Operators for Description Logics 173

6 Conclusions

We have presented a comprehensive analysis of properties of refinement opera-
tors. The results are summarised in Theorems 1 and 2. In particular, we have
shown that ideal refinement operators for description logics cannot exist. We have
also shown in detail which combinations of properties are in general achievable.
This analysis is fundamental for using refinement operators in description logics
and was requested in [6,7].

After the derivation of these results, two learning systems have been devel-
oped, which use the Property Theorem as theoretical foundation. They are re-
ported on elsewhere [11,13]. Both systems are fully implemented and have shown
promising results in evaluations.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Badea, L., Stanciu, M.: Refinement operators can be (weakly) perfect. In: Džeroski,
S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 21–32. Springer,
Heidelberg (1999)

3. Badea, L.: Perfect refinement operators can be flexible. In: Horn, W. (ed.) Pro-
ceedings of the 14th European Conference on Artificial Intelligence, August 2000,
pp. 266–270. IOS Press, Amsterdam (2000)

4. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59.
Springer, Heidelberg (2000)

5. Cohen, W.W., Hirsh, H.: Learning the classic description logic: Theoretical and
experimental results. In: Doyle, P.T.J., Sandewall, E. (eds.) Proceedings of the
4th International Conference on Principles of Knowledge Representation and Rea-
soning, Bonn, FRG, May 1994, pp. 121–133. Morgan Kaufmann, San Francisco
(1994)

6. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455.
Springer, Heidelberg (2004)

7. Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., Semeraro, G.: Downward refine-
ment in the ALN description logic. In: 4th International Conference on Hybrid
Intelligent Systems (HIS 2004), Kitakyushu, Japan, December 2004, pp. 68–73.
IEEE Computer Society, Los Alamitos (2004)

8. Fanizzi, N., Ferilli, S., Di Mauro, N., Basile, T.M.A.: Spaces of theories with ideal
refinement operators. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003, Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pp. 527–532. Morgan Kaufmann, San Francisco (2003)

9. Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept
learning in the semantic web. In: Ali, M., Esposito, F. (eds.) Innovations in Ap-
plied Artificial Intelligence. Proceedings of the 18th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, Bari, Italy, June 2005, pp. 370–379 (2005)

174 J. Lehmann and P. Hitzler

10. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14, 193–217 (1994)

11. Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007.
LNCS (LNAI), vol. 4571, Springer, Heidelberg (2007)

12. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics.
In: Technical report. University of Leipzig (2007), http://www.jens-lehmann.org

13. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description log-
ics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS
(LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2007)

14. Lisi, F.A., Malerba, D.: Ideal refinement of descriptions in AL-log. In: Horváth, T.,
Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer,
Heidelberg (2003)

15. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
16. Nienhuys-Cheng, S.-H., Van Laer, W., Ramon, J., De Raedt, L.: Generalizing re-

finement operators to learn prenex conjunctive normal forms. In: Džeroski, S.,
Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 245–256. Springer, Hei-
delberg (1999)

17. Nienhuys-Cheng, S.H., van der Laag, P.R.J., van der Torre, L.W.N.: Construct-
ing refinement operators by decomposing logical implication. In: Torasso, P. (ed.)
AI*IA 1993. LNCS, vol. 728, pp. 178–189. Springer, Heidelberg (1993)

18. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Pro-
gramming. LNCS, vol. 1228. Springer, Heidelberg (1997)

19. Shapiro, E.Y.: Inductive inference of theories from facts. In: Lassez, J.L., Plotkin,
G.D. (eds.) Computational Logic: Essays in Honor of Alan Robinson, pp. 199–255.
MIT Press, Cambridge (1991)

20. van der Laag, P.R.J., Nienhuys-Cheng, S.-H.: Existence and nonexistence of com-
plete refinement operators. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994.
LNCS, vol. 784, pp. 307–322. Springer, Heidelberg (1994)

http://www.jens-lehmann.org

A Relational Hierarchical Model for

Decision-Theoretic Assistance

Sriraam Natarajan, Prasad Tadepalli, and Alan Fern

School of EECS,
Oregon State University, Corvallis, Oregon, USA

Abstract. Building intelligent assistants has been a long-cherished goal
of AI and many were built and fine-tuned to specific application do-
mains. In recent work, a domain-independent decision-theoretic model
of assistance was proposed, where the task is to infer the user’s goal
and take actions that minimize the expected cost of the user’s policy.
In this paper, we extend this work to domains where the user’s policies
have rich relational and hierarchical structure. Our results indicate that
relational hierarchies allow succinct encoding of prior knowledge for the
assistant, which in turn enables the assistant to start helping the user
after a relatively small amount of experience.

1 Introduction

There has been a growing interest in developing intelligent assistant systems that
help users in a variety of tasks ranging from washing hands to travel planning
[2,6,3]. The emphasis in these systems has been to provide a well-engineered
domain-specific solution to the problem of reducing the users’ cognitive load in
their daily tasks. A decision-theoretic model was proposed recently to formalize
the general problem of assistantship as a partially observable Markov decision
process (POMDP). In this framework, the assistant and the user interact in the
environment to change its state. The goal of the assistant is to take actions that
minimize the expected cost of completing the user’s task [9]. In most situations,
however, the user’s task or goal1 is not directly observable to the assistant, which
makes the problem of quickly inferring the user’s goals from observed actions
critically important. One approach to goal inference [9] is to learn a probabilistic
model of the user’s policy for achieving various goals and then to compute a
posterior distribution over goals given the current observation history. However,
for this approach to be useful in practice, it is important that the policy be
learned as early in the lifetime of the assistant as possible. We call this the
problem of “early assistance”, which is the main motivation behind this work.

One solution to the early assistance problem, advocated in [9], is to assume
that (a) the user’s policy is optimal with respect to their goals and actions,
the so called “rationality assumption,” and that (b) the optimal policy can be
computed quickly by knowing the goals, the “tractability assumption.” Under
1 In this work, we use the words task and goal interchangeably.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 175–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 S. Natarajan, P. Tadepalli, and A. Fern

these assumptions, the user’s policy for each goal can be approximated by an
optimal policy, which may be quickly computed. Unfortunately in many real
world domains, neither of these assumptions is realistic. Real world domains
are too complex to allow tractable optimal solutions. The limited computational
power of the user renders the policies to be locally optimal at best.

In this paper, we propose a different solution to the early assistance prob-
lem, namely constraining the user’s policies using prior domain knowledge in
the form of hierarchical and relational constraints. Consider an example of a
desktop assistant similar to CALO [4] that helps an academic researcher. The
researcher could have some high level tasks like writing a proposal, which may
be divided into several subtasks such as preparing the cover page, writing the
project description, preparing the budget, completing the biography, etc. with
some ordering relationships between them. We expect that an assistant that
knows about this high level structure would better help the user. For example,
if the budget cannot be prepared before the cover page is done, the assistant
would not consider that possibility and can determine the user’s task faster. In
addition to the hierarchical structure, the tasks, subtasks, and states have a class
and relational structure. For example, the urgency of a proposal depends on the
closeness of the deadline. The deadline of the proposal is typically mentioned on
the web page of the agency to which the proposal is addressed. The collaboration
potential of an individual on a proposal depends on their expertise in the areas
related to the topic of the proposal. Knowing these relationships and how they
influence each other could make the assistant more effective.

This work extends the assistantship model to hierarchical and relational set-
tings, building on the work in hierarchical reinforcement learning[10] and statis-
tical relational learning (SRL).We extend the assistantship framework of [9] by
including parameterized task hierarchies and conditional relational influences as
prior knowledge of the assistant. We compile this knowledge into an underlying
Dynamic Bayesian network and use Bayesian network inference algorithms to
infer the distribution of user’s goals given a sequence of their atomic actions.
We estimate the parameters for the user’s policy and influence relationships by
observing the users’ actions. Once the user’s goal distribution is inferred, we de-
termine an approximately optimal action by estimating the Q-values of different
actions using rollouts and picking the action that has the least expected cost.

We evaluate our relational hierarchical assistantship model in two different toy
domains and compare it to a propositional flat model, propositional hierarchical
model, and a relational flat model. Through simulations, we show that when
the prior knowledge of the assistant matches the true behavior of the user, the
relational hierarchical model provides superior assistance in terms of performing
useful actions. The relational flat model and the propositional hierarchical model
provide better assistance than the propositional flat model, but fall short of the
performance of the relational hierarchical approach.

The rest of the paper is organized as follows: Section 2 summarizes the ba-
sic decision-theoretic assistance framework, which is followed by the relational

A Relational Hierarchical Model for Decision-Theoretic Assistance 177

hierarchical extension in Section 3. Section 4 presents the experiments and re-
sults, Section 5 outlines some related work and Section 6 concludes the paper.

2 Decision-Theoretic Assistance

In this section, we briefly describe the decision-theoretic model of assistance of
[9] which forms the basis of our work. In this setting, there is a user acting
in the environment and an assistant that observes the user and attempts to
assist him. The environment is modeled as an MDP described by the tuple
〈W, A, A′, T, C, I〉, where W is a finite set of world states, A is a finite set of
user actions, A′ is a finite set of assistant actions, and T (w, a, w′) is a transition
function that represents the probability of transitioning to state w′ given that
action a ∈ A ∪ A′ is taken in state w. C is an action-cost function that maps
W × (A ∪ A′) to real numbers, and I is an initial state distribution over W . An
episodic setting is assumed, where the user chooses a goal and tries to achieve it.
The assistant observes the user’s actions and the world states but not the goal.
After every user’s action, the assistant gets a chance to take one or more actions
ending with a noop action, after which the user gets a turn. The objective is to
minimize the sum of the costs of user and assistant actions.

The user is modeled as a stochastic policy π(a|w, g) that gives the probability
of selecting action a ∈ A given that the user has goal g and is in state w. The
objective is to select an assistant policy π′ that minimizes the expected cost given
the observed history of the user. The environment is only partially observable
to the assistant since it cannot observe the user’s goal. It can be modeled as a
POMDP, where the user is treated as part of the environment.

In [9], the assistant POMDP is solved approximately, by first estimating the
goal of the user given the history of his actions, and then selecting the best
assistive action given the posterior goal distribution. One of the key problems
in effective assistantship is to learn the task quickly enough to start helping the
user as early as possible. In [9], this problem is solved by assuming that the
user is rational, i.e., he takes actions to minimize the expected cost. Further, the
user MDP is assumed to be tractably solvable for each goal. Hence, their system
solves the user MDP for each goal and uses it to initialize the user’s policy.

Unfortunately the dual assumptions of tractability MDP and rationality make
this approach too restrictive to be useful in real-world domains that are too com-
plicated for any user to approach perfect rationality. We propose a knowledge-
based approach to the effective assistantship problem that bypasses the above
two assumptions. We provide the assistant with partial knowledge of the user’s
policy, in the form of a task hierarchy with relational constraints on the subtasks
and their parameters. Given this strong prior knowledge, the assistant is able to
learn the user’s policy quickly by observing his actions and updating the policy
parameters. We appropriately adopt the goal estimation and action selection
steps of [9] to the new structured policy of the user and show that it performs
significantly better than the unstructured approach.

178 S. Natarajan, P. Tadepalli, and A. Fern

3 A Relational Hierarchical Model of Assistance

In this section, we propose a relational hierarchical representation of the user’s
policy and show its use for goal estimation and action selection.

3.1 Relational Hierarchical Policies

Users in general, solve difficult problems by decomposing them into a set of
smaller ones with some ordering constraints between them. For example, pro-
posal writing might involve writing the project description, preparing the bud-
get, and then getting signatures from proper authorities. Also, the tasks have
a natural class-subclass hierarchy, e.g., submitting a paper to ICML and IJCAI
might involve similar parameterized subtasks. In the real world, the tasks are
chosen based on some attributes of the environment or the user. For instance,
the paper the user works on next is influenced by the closeness of the deadline.
It is these kinds of relationships that we want to express as prior knowledge so
that the assistant can quickly learn the relevant parameters of the policy. We
model the user as a stochastic policy π(a|w, T, O) that gives the probability of
selecting action a ∈ A given that the user has goal stack T and is in state w. O
is the history of the observed states and actions. Learning a flat, propositional
representation of the user policy is not practical in many domains. Rather, in
this work, we represent the user policy as a relational task hierarchy and speed
up the learning of the hierarchy parameters via the use of conditional influence
statements that constrain the space of probabilistic dependencies.

Relational Task Hierarchies. A relational task hierarchy is specified over a
set of variables, domain constants, and predicate symbols. There are predicate
symbols for representing properties of world states and specifying task names.
The task predicates are divided into primitive and abstract tasks. Primitive
task predicates will be used to specify ground actions in the MDP that can be
directly executed by the user. Abstract task predicates will be used to specify
non-primitive procedures (that involve calling subtasks) for achieving high-level
goals. Below we will use the term task stack to mean a sequence of ground task
names (i.e. task predicates applied to constants).

A relational task hierarchy will be composed of relational task schemas which
we now define.

Definition 1 (Relational Task Schema). A relational task schema is either:
1) A primitive task predicate applied to the appropriate number of variables, or
2) A tuple 〈N, S, R, G, P 〉, where the task name N is an abstract task predicate
applied to a set of variables V , S is a set of child relational task schemas (i.e. the
subtasks), R is a set of logical rules over state, task, and background predicates
that are used to derive a candidate set of ground child tasks in a given situation,
G is a set of rules that define the goal conditions for the task, and P (s|T, w, O)
is a probability distribution that gives the probability of a ground child task s
conditioned on a task stack T , a world state w, and an observation history O.

A Relational Hierarchical Model for Decision-Theoretic Assistance 179

Each way of instantiating the variables of a task schema with domain con-
stants yields a ground task. The semantics of a relational task schema specify
what it means for the user to “execute to completion” a particular ground task
as follows. As the base case, a primitive ground task is executed-to-completion
by simply executing the corresponding primitive MDP action until it terminates,
resulting in an updated world state.

An abstract ground task, can intuitively be viewed as specifying a stochas-
tic policy over its child subtasks which is executed until its goal condition is
satisfied. More precisely, an abstract ground task t is executed-to-completion by
repeatedly selecting ground child tasks that are executed-to-completion until the
goal condition G is satisfied. At each step given the current state w, observation
history O, task stack T , and set of variable bindings B (that include the bindings
for t) a child task is selected as follows: 1) Subject to the variable bindings, the
rules R are used to derive a set of candidate ground child tasks. 2) From this
set we draw a ground task s according to P , properly normalized to only take
into account the set of available subtasks. 3) The drawn ground task is then
executed-to-completion in the context of variables bindings B′ that include the
bindings in B along with those in s and a task stack corresponding to pushing
t onto T .

Based on the above description, the set of rules R can be viewed as specifying
hard constraints on the legal subtasks with P selecting among those tasks that
satisfy the constraints. The hard constraints imposed by R can be used restrict
the argument of the child task to be of a certain type or may place mutual
constraints on variables of the child tasks. For example, we could specify rules
that say that the document to be attached in an email should belong to the
project that the user is working on. Also, the rules can specify the ordering
constraint between the child tasks. For instance, it would be possible to say that
to submit a paper the task of writing the paper must be completed first.

We can now define a relational task hierarchy.

Definition 2 (Relational Task Hierarchy). A relational task hierarchy is
rooted acyclic graph whose nodes are relational task schemas that satisfy the
following constraints: 1) The root is a special subtask called ROOT. 2) The
leaves of the graph are primitive task schemas. 3) There is an arc from node n1
to node n2 if and only if the task schema of n2 is a child of task schema n1.

We will use relational task hierarchies to specify the policy of a user. Specifically,
the user’s actions are assumed to be generated by executing the ROOT task of
the hierarchy with an initially empty goal stack and set of variable bindings.

An example of a Relational Task Hierarchy is presented in the Figure 1 for a
game involving resource gathering and tactical battles. For each task schema we
depict some of the variable binding constraints enforced by the R as a logical
expression. For clarity we do not depict the ordering constraints imposed by R.
From the ROOT task the user has two distinct choices to either gathering a
resource, Gather(R) or attacking an enemy, Attack(E). Each of these tasks can
be achieved by executing either a primitive action (represented with ovals in the
figure) or another subtask. For example, to gather a resource, the user needs

180 S. Natarajan, P. Tadepalli, and A. Fern

to collect the resource (denoted by Collect(R)) and deposit the resource at the
storage (denoted by Deposit(R,S), which indicates that R is to be deposited in S).
Resources are stored in the storages of the same type (for example, gold in a bank,
food in a granary etc.), which is expressed as the constraint R.type = S.type in
the figure. Once the user chooses to gather a resource (say gold1), the value of
R in all the nodes that are lower than the node Gather(R) is set to the value
gold1. R is freed after Gather is completed.

Gather(R) Attack(E)

Collect(R) Deposit(R,S) DestroyCamp(E)KillDragon(D)

Goto(L)
Pickup(R)

Move(X) Open(D)

DropOff(R,S)

R.Type = S.Type

L = S.Loc

L = R.Loc

L = D.Loc
Kill(D)

Destroy(E)

L = E.Loc

E.Type = D.Type

ROOT

Fig. 1. Example of a task hierarchy of the user. The inner nodes indicate subtasks
while the leaves are the primitive actions. The tasks are parameterized and the tasks
at the higher level will call the tasks at the lower level.

Conditional Influences: Often it is relatively easy to hand-code the rule sets
R that encode hard-constraints on child tasks. It is more difficult to precisely
specify the probability distributions for each task schema. In this work, we take
the approach of hand-coding a set of conditional influence statements that are
used to constrain and hence speedup the learning of these probability distribu-
tions. The conditional influences describe the objects and their attributes that
influence a subtask choice based on some condition, i.e., these statements serve
to capture a distribution over the subtasks given some attributes of the envi-
ronment (P (subtask | worldstate)). For example, since there could be multiple
storage locations for a resource, the choice of a storage may be influenced by its
distance to the resource. While this knowledge can be easily expressed in most
SRL formalisms such as Probabilistic Relational Language [18] and Bayesian
Logic Programs [15], we give an example in First-Order Conditional Influence
Language (FOCIL) [19].

If {Goal(Gather(R)),Completed(Collect(R)),Equal(Type(R),Type(S))} then
Distance(Loc(R), Loc(S))) Qinf subgoal(Deposit(R,S))

A FOCIL statement of the form If{Z(α)} then Y1(α), . . . , Yk(α) Qinf
X(α) means that Y1(α), . . . , Yk(α) influence X(α) when Z(α) is true, where α is

A Relational Hierarchical Model for Decision-Theoretic Assistance 181

a set of logical variables. The above statement captures the knowledge that if R
is a resource that has been collected, and S is a storage where R can be stored,
the choice of the value of S is influenced by the distance between R and S. The
probability of choosing a subtask in a given state is determined solely by the
attribute values of the objects mentioned in the conditional influence statement,
which puts a strong constraint on the user’s policy and makes it easier to learn.

The high level algorithm is presented in table 1. The parameters are updated
at the end of the episode using MLE estimates. When an episode is completed,
the set of completed tasks and the action trajectories are used to update the
parameters of the nodes at different levels.

Table 1. Highlevel algorithm for assistance

– Iitialize DBNs as in Figure 2 incorporating all hard constraints into the CPTs
– For each episode

• For each time step
∗ Observe any task completed
∗ Update the posterior distribution of goal stack based on the observation,

the hard constraints, and FOCI statements
∗ Observe the next action
∗ Update the posterior distribution over the tasks in the task stack
∗ Compute the best assistive action

• Update the DBN parameters

3.2 Goal Estimation

In this section, we describe our goal estimation method, given the kind of prior
knowledge described in the previous section, and the observations, which consist
of the user’s primitive actions. Note that the probability of the user’s action
choice depends in general on not only the pending subgoals, but also on some
of the completed subgoals including their variable bindings. Hence, in general,
the assistant POMDP must maintain a belief state distribution over the pending
and completed subgoals. which we call the “goal structure.”

We now define the assistant POMDP. The state space is W ×T where W is
the set of world states and T is the user’s goal structure. Correspondingly, the
transition probabilities are functions between (w, t) and (w′, t). Similarly,
the cost is a function of 〈state, action〉 pairs. The observation space now
includes the user’s actions and their parameters (for example, the resource that
is collected, the enemy type that is killed etc).

In this work, we make a simplifying assumption that there is no uncertainty
about the completed subtasks. This assumption is justified in our domains, where
the completion of each subtask is accompanied with an observation that identifies
the subtask that has just completed. This would simplify the inference process as

182 S. Natarajan, P. Tadepalli, and A. Fern

we do not need to maintain a distribution over the (possibly) completed subtasks.
For estimating the user’s goal stack, we use a DBN similar to the one used in [16]
and present it in Figure 2. T i

j refers to the task at time-step j and level i in the
DAG. Oi refers to the completed subtask at level i. F i

j is an indicator variable
that represents whether T i

j has been completed and acts as a multiplexer node.
If the lower level task is completed and the current task is not completed, the
transition function for the current task would reflect choosing an action for the
current subtask. If the lower level task is not completed, the current task stays
at its current state. If the current task is completed, the value is chosen using a
prior distribution over the current task given the higher level tasks.

In the experiments reported in the next section, we compiled the FOCIL
statements into a DBN structure by hand. The number of levels of the tasks in
the DBN corresponds to the depth of the directed graph in the relational task
hierarchy. The values of the different task level nodes will be the instantiated
tasks in the hierarchy. For instance, the variable T 1

j takes values corresponding
to all possible instantiations of the second-level tasks. Once the set of possible
values for each current task variable in the task is determined, the constraints
are used to construct the CPT. For example, the constraint R.Type = S.Type
in the Figure 1 implies that a resource of one type can be stored in the storage
of the same type. Assume that the user is gathering gold. Then in the CPT
corresponding to P (T 2

j = Store(S, gold) | T 1
j = Gather(gold), all the entries

except the ones that correspond to a bank are set to 0. The rules R of the task
schema determine the non-zero entries of the CPTs, while the FOCIL statements
constrain the distributions further. Note that, in general, the subtasks completed
at a particular level influence the distribution over the current subtasks at the
same level through the hard constraints, which include ordering relationships. In
our experiments, however, we have chosen to not explicitly store the completed
subtasks at any stage since the ordering of subtasks has a special structure.
The subtasks are partitioned into small unordered groups, where the groups are
totally ordered. This allows us to maintain a small memory of only the completed
subtasks in the current group.

1
1T

2
1T

3
1T

1
1F

2
1F

1a

3
1F

1s

1
2T

2
2T

3
2T

1
2F

2
2F

2a

3
2F

2s

1Aa

t = 1 t = 2

3O

2O 2O

3O

Fig. 2. Dynamic Bayesian network that is used to infer the user’s goal

A Relational Hierarchical Model for Decision-Theoretic Assistance 183

To illustrate the construction of the DBN given the hierarchy and influence
statements better, let us consider the example presented in Figure 1. Assume that
the user chooses to gather g1 (i.e., gold from location 1). Once the episode begins,
the variables in the DBN are instantiated to the corresponding values. The task
at the highest level T 1

j , would take values from the set 〈 Gather(g1), Gather(g2),
Gather(w1),Gather(w2), Destroy(e1),Destroy(e2) 〉, assuming that there are 2
gold and wood locations and 2 enemies. Similarly, the tasks at level n of the
DBN would assume values corresponding to the instantiation of the nodes at
the nth level of the hierarchy. The conditional influence statements are used
to obtain a prior distribution over the goal stack only after every subtask is
finished or to minimize uncertainty and retain tractability. Once the prior is
obtained, the posterior over the goal stack is updated after every user action. For
example, once the user finishes the subtask of collect(g1), the relational structure
would restrict the set of subgoals to depositing the resource and the conditional
influence statements would provide a prior over the storage locations. Once the
highest level task of Gather is completed, the DBN parameters are updated using
the complete set of observations. Our hypothesis that we verify empirically is
that, the relational structure and the conditional influence statements together
provide a strong prior over the task stack which enables fast learning.

Given this DBN, we need to infer the value of P (T 1:d
j | T 1:d

j−1, F
1:d
j−1, aj, O

1:d),
where d is the depth of the DAG i.e, infer the posterior distribution over the
user’s goal stack given the observations (the user actions in our case) and the
completed goal stack. As we have mentioned, we are not considering the com-
pleted subgoals due to the fact that most of our constraints are total order and
there is no necessity of maintaining them. Since we always estimate the current
goal stack given the current action and state, we can approximate the DBN
inference as a BN inference for the current time-step. The other issue is the
learning of parameters of the DBN. At the end of every episode, the assistant
updates the parameters of the DBN based on the observations in that episode
using maximum likelihood estimates with Laplace correction. Since the model is
inherently relational, we can exploit parameter tying between similar objects and
hence accelerate the learning of parameters. The parameter learning in the case
of relational models is significantly faster as demonstrated by our experiments.

It should be noted that Fern et.al solved the user MDP and used the values
to initialize the priors for the user’s action models. Though it seems justifiable,
it is not always possible to solve the user MDP. We show in our experiments
that even if we begin with an uniform prior for the action models, the relations
and the hierarchical structure would enable the assistant to be useful even in
the early episodes.

3.3 Action Selection

Given the assistant POMDP M and the distribution over the user’s goal stack
P (T 1:d | Oj), where Oj are the observations, we can compute the value of assis-
tive actions. Following the approach of [9], we approximate the assistant POMDP

184 S. Natarajan, P. Tadepalli, and A. Fern

with a series of MDPs M(t1:d), for each possible goal stack t1:d. Thus, the heuris-
tic value of an action a in a world state w given the observations Oj at time-step
j would now correspond to,

H(w, a, Oj) =
�

t1:d

Qt1:d(w, a) · P (t1:d|Oj)

where Qt1:d(w, a) is the value of performing the action a in state w in the MDP
M(t1:d) and P (t1:d|Oj) is the posterior probability of the goal stack given the
observations. Instead of sampling over the goals, we sample over the possible goal
stack values. The relations between the different goals would restrict the number
of goal-subgoal combinations. If the hierarchy is designed so that the subgoals
are not shared between higher level goals, we can greatly reduce the number
of possible combinations and hence making the sampling process practically
feasible. We verify this empirically in our experiments. To compute the value of
Qt1:d(w, a), we use the policy rollout technique [5] where the assumption is that
the assistant would perform only one action and assumes that the agent takes
over from there and estimates the value by rolling out the user policy. Since
the assistant has access to the hierarchy, it chooses the actions subjected to the
constraints specified by the hierarchy.

4 Experiments and Results

In this section, we briefly explain the results of simulation of a user in two do-
mains2: a gridworld doorman domain where the assistant has to open the right
doors to the user’s destination and a kitchen domain where the assistant helps
the user in preparing food. We simulate a user in these domains and compare
different versions of the decision theoretic model and present the results of the
comparison. The different models that we compare are: the relational hierarchi-
cal model that we presented, a hierarchical model where the goal structure is
hierarchical, a relational model where there are objects and relations but there
is a flat goal structure and a flat model which is a very naive model with a flat
goal structure and no notion of objects are relationships. Our hypothesis is that
the relational models would benefit from parameter tying and hence can learn
the parameters faster and would offer better assistance than their propositional
counterparts at earlier episodes. Similarly, the hierarchical model would make
it possible to decompose the goal structure thus making it possible to learn
faster. We demonstrate through experiments that the combination of relational
and hierarchical models would enable the assistant to be more effective than the
assistant that uses either of these models.

4.1 Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the
user has to open to navigate to the adjacent cell (see Figure 3.a). The hierarchy
2 These are modification to the domains presented by Fern et.al[9].

A Relational Hierarchical Model for Decision-Theoretic Assistance 185

presented in Figure 1.a was used as the user’s goal structure. The goals of the
user are to Gather a resource or to Attack an enemy. To gather a resource, the
user has to collect the resource and deposit it at the corresponding location. Sim-
ilarly, to destroy an enemy, the user has to kill the dragon and destroy the castle.
There are different kinds of resources, namely food and gold. Each resource can
be stored only in a storage of its own type (i.e, food is stored in granary and
gold is stored in bank). There are 2 locations for each of the resources and its
storage. Similarly there are 2 kinds of enemy red and blue. The user has to kill
the dragon of a particular kind and destroy the castle of the same kind. The
episode ends when the user achieves the highest level goal. The actions that the
user can perform are to move in 4 directions, open the 4 doors, pick up, put down
and attack. The assistant can only open the doors or perform a noop. The door
closes after one time-step so that at any time only one door is open. The goal
of the assistant is to minimize the number of doors that the user needs to open.
The user and assistant take actions alternately in this domain. We employed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of episodes x 10

%
 s

a
v

in
g

s

Relational Hierarchies

Hierarchical Model

Flat Model

RelationalModel

Fig. 3. (a)Doorman Domain. Each cell has 4 doors that the user has to open to navigate
to the adjacent cell. The goal of the assistant is to minimize the number of doors that
the user has to open. (b)Learning curves for the 4 algorithms in the doorman domain.
The y-axis presents the average savings for the user due to the assistant.

four versions of the assistant that models the user’s goal structure: one that
models the structure as a relational hierarchical model, second which assumes a
hierarchical goal structure but no relational structure (i.e., the model does not
know that the 2 gold locations are of the same type etc and thus cannot exploit
parameter tying), third which assumes a relational structure of user’s goal but
assumes flat goals and hence does not know the relationship between collect and
deposit of subtasks, and the fourth that assumes a flat goal structure. A state
is a tuple 〈s, d〉, where s stands for the the agent’s cell and d is the door that is
open. For the two flat cases, there is a necessity include variables such as carry
that can take 5 possible values and kill that take 3 values to capture the state

186 S. Natarajan, P. Tadepalli, and A. Fern

of the user having collected a resource or killed the dragon before reaching the
eventual destination. Hence the state space of the 2 flat models is 15 times more
than that of the hierarchical one.

To compare the 4 algorithms, we solved the underlying hierarchical MDP
and then used the Q-values to simulate the user. For each episode, the higher
level goals are chosen at random and the user attempts to achieve the goal.
We calculate usefulness of the assistant as the ratio of the correct doors that
it opens to the total number of doors that are needed to be opened for the
user to reach his goal which is a worst-case measure of the cost savings of the
user. We average the usefulness every 10 episodes. The user’s policy is hidden
from the assistant in all the algorithms and the assistant learns the user policy
as and when the user performs his actions. The relational model captures the
relationship between the resources and storage and between the dragon’s type
and the castle’s type. The hierarchical model captures the relationship between
the different goals and subgoals, for instance, that the user has to collect some
resource in order to deposit it, etc. The hierarchical relational model has access
to both the kinds of knowledge and also to the knowledge that the distance to
the storage location influences the choice of the storage location.

The results are presented in Figure 3.b. The graph presents the average use-
fulness of the assistant after every 10 episodes. As can be seen from the figure,
the relational hierarchical assistant is more useful than the other models. In
particular, it can exploit the prior knowledge effectively as demonstrated by the
rapid increase in the usefulness in earlier episodes. The hierarchical and rela-
tional models also exploit the prior knowledge and hence have a quicker learning
rate than the flat model (as can be seen from the first few episodes of the fig-
ure). The hierarchical relational model outperforms the hierarchical model as
it can share parameters and hence has to learn a smaller number of parame-
ters. It outperforms the relational model as it can exploit the knowledge of the
user’s goal structure effectively and can learn quickly at the early stages of an
episode.required for computing the best action of the assistant for all the four
algorithms. This clearly demonstrates that the hierarchical relational model can
be more effective without increasing the computational cost.

4.2 Kitchen Domain

The other experimental domain is a kitchen domain where the user has to cook
some dishes. In this domain, the user has 2 kinds of higher-level goals: one in
which he could prepare a recipe which contains a main dish and a side dish and
the second in which, he could use some instant food to prepare a main dish and
a side dish. There are 2 kinds of main dishes and 2 kinds of side dishes that he
could prepare from the recipe. Similarly, there are 2 kinds of main dishes and
2 kinds of side dishes that he could prepare from instant food. The hierarchy is
presented in Figure 4.a. The symbol ∈ is used to capture the information that
the object is part of the plan. For instance, the expression I ∈ M.Ing means that
the parameter to be passed is the ingredient that is used to cook the main dish.
The plans are partially ordered. There are 2 shelves with 3 ingredients each. The

A Relational Hierarchical Model for Decision-Theoretic Assistance 187

shelves have doors that must be opened before fetching ingredients and only one
door can be open at a time.

The state consists of the contents of the bowl, the ingredient on the table,
the mixing state and temperature state of the ingredient (if it is in the bowl)
and the door that is open. The user’s actions are: open the doors, fetch the
ingredients, pour them into the bowl, mix, heat and bake the contents of the
bowl, or replace an ingredient back to the shelf. The assistant can perform all
user actions except for pouring the ingredients or replacing an ingredient back to
the shelf. The cost of all non-pour actions is -1. Unlike in the doorman domain,
here it is not necessary for the assistant to wait at every alternative time step.
The assistant continues to act until the noop becomes the best action according
to the heuristic. The episode begins with all the ingredients in the shelf and the
doors closed. The episode ends when the user achieves the goal of preparing a
main dish and a side dish either with the recipe or using instant food.

The savings is the ratio of the correct non-pour actions that the assistant has
performed to the number of actions required for the goal. Similar to the other do-
main, we compared 4 different types of models of assistance. The first is the hi-
erarchical relational model that has the knowledge of the goal-subgoal hierarchy
and also has the relationship between the subgoals themselves. It knows that the
type of the main dish influences the choice of the side dish. The second model is the
hierarchical model, that has the notions of the goals and subgoals but no knowl-
edge of the relationship between the main dishes and the side dishes and thus has
more number of parameters to learn. The relational model assumes that there are
two kinds of food namely the one prepared from recipe and one from instant food
and does not possess any knowledge about the hierarchical goal structure. The flat
model considers the preparation of each of the 8 dishes as a separate goal and as-
sists the user. Both the flat model and the relational model assume that the user
is always going to prepare the dishes in pairs but do not have the notion of main
dish and side dishes or the ordering constraints between them.

The results are presented in Figure 4.b. As can be seen, the hierarchical models
greatly dominate the flat ones. Among the models, the relational models have a

PrepareRecipe(R) InstantFood(I)

MainDish(M) SideDish(S) SideDish(SI)MainDish(MI)

FetchIng(I)

Fetch(I) Pour(I)

I M.Ing I S.Ing

I MI.Ing

I SI.Ing

Temp(C)

Heat Bake

C M.NeededTemp
C S.NeededTemp

C MI.NeededTemp

C SI.NeededTemp

OpenDoor(D)

D = I.Loc.Door

ROOT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of epsides x 10

 S
av

in
g

s

Flat

Relational

Hierarchical

Relational Hierarchical

Fig. 4. (a)The kitchen domain hierarchy. (b)Learning curves of the different algorithms.

188 S. Natarajan, P. Tadepalli, and A. Fern

faster learning rate than their propositional counterparts. They perform better
in the earlier few episodes which clearly demonstrates that relational background
knowledge accelerates learning. In this domain, the hierarchical knowledge seems
to dominate the relational knowledge. This is due to the fact that all the subgoals
are similar (i.e, each of them is preparing some kind of food) and the hierarchical
knowledge clearly states the ordering of these subgoals. The relational hierar-
chical model has a better savings rate in the first few episodes as it has a fewer
parameters to learn. Both the flat model and the relational model eventually con-
verged on the same savings after 700 episodes. These results demonstrate that
though all the models can eventually converge to the same value, the relational
hierarchical model converges in early episodes.

5 Related Work

Most of the decision-theoretic assistants have been formulated as POMDPs that
are approximately solved offline. For instance, the COACH system helped people
suffering from Dementia by giving them appropriate prompts as needed in their
daily activities [2]. In this system, there is a single fixed goal of washing hands
for the user. In Electric Elves, the assistant is used to reschedule a meeting
should it appear that the user is likely to miss it [6]. These systems do not have
a hierarchical goal structure for the user while in our system, the assistant infers
the user’s goal combinations and renders assistance.

Several plan recognition algorithms use a hierarchical structure for the user’s
plan. These systems would typically use a hierarchical HMM [17] or an abstract
HMM [1] to track the user’s plan. They unroll the HMMs to a DBN and perform
inference to infer the user’s plan. We follow a similar approach, but the key
difference is that in our system, the user’s goals are relational. Also, we allow
for richer models and do not restrict the user’s goal structure to be modeled by
a HMM. We use the qualitative influence statements to model the prior over
the user’s goal stack. We observe that this could be considered as a method to
incorporate richer user models inside the plan recognition systems. There has
been substantial research in the area of user modeling. Systems that have been
used for assistance in spreadsheets [7] and text editing [8] have used handcoded
DBNs to infer about the user. Our system provides a natural way to incorporate
user models into a decision-theoretic assistant framework.

In recent years, there have been several first-order probabilistic languages de-
veloped such as PRMs [14], BLPs [15], RBNs [12], MLNs [13] and many others.
One of the main features of these languages is that they allow the domain expert
to specify the prior knowledge in a succinct manner. These systems exploit the
concept of parameter tying through the use of objects and relations. In this pa-
per, we showed that these systems can be exploited in decision-theoretic setting.
We combined the hierarchical models typically used in reinforcement learning
with the kinds of influence knowledge typically encoded in relational models to
provide a strong bias on the user policies and accelerate learning.

A Relational Hierarchical Model for Decision-Theoretic Assistance 189

6 Conclusions and Future Work

In this work we proposed the incorporation of parameterized task hierarchies to
capture the goal structure of a user in a decision-theoretic model of assistance.
We used the relational models to specify the prior knowledge as relational hier-
archies and as a means to provide informative priors. We evaluated our model
against the non-hierarchical and non-relational versions of the model and es-
tablished that combining both the hierarchies and relational models makes the
assistant more useful. The incorporation of hierarchies would enable the assis-
tant to address several other problems in future. The most important one is
the concept of parallel actions. Our current model assumes that the user and
the assistant have interleaved actions and cannot act in parallel. Allowing par-
allel actions can be leveraged if the goal structure is hierarchical as the user
can achieve a subgoal while the assistant can try to achieve another one. Yet
another problem that could be handled due to the incorporation of hierarchies is
the possibility of the user changing his goals midway during an episode. Finally,
we can also imagine providing assistance to the user in the cases where he forgets
to achieve a particular subgoal.

Acknowledgements

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA), through the Department of the Interior, NBC, Ac-
quisition Services Division, under Contract No. NBCHD030010.

References

1. Bui, H., Venkatesh, S., West, G.: Policy recognition in the Abstract Hidden Markov
Models. In: JAIR, vol. 17 (2002)

2. Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., Mihailidis, A.: A Decision-
Theoretic Approach to Task Assistance for Persons with Dementia. In: IJCAI 2005,
pp. 1293–1299 (2005)

3. Ambite, J.L., Barish, G., Knoblock, C.A., Muslea, M., Oh, J., Minton, S.: Getting
from Here to There: Interactive Planning and Agent Execution for Optimizing
Travel. In: IAAI, pp. 862–869 (2002)

4. Myers, K., Berry, P., Blythe, J., Conleyn, K., Gervasio, M., McGuinness, D., Mor-
ley, D., Pfeffer, A., Pollack, M., Tambe, M.: An Intelligent Personal Assistant for
Task and Time Management. AI Magazine (June 2007)

5. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific
(1996)

6. Varakantham, P., Maheswaran, R., Tambe, M.: Exploiting belief bounds: Practical
POMDPs for personal assistant agents. In: Kudenko, D., Kazakov, D., Alonso, E.
(eds.) AAMAS 2004. LNCS (LNAI), vol. 3394, Springer, Heidelberg (2005)

7. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere
project: Bayesian user modeling for inferring the goals and needs of software users.
In: UAI, pp. 256–265 (1998)

190 S. Natarajan, P. Tadepalli, and A. Fern

8. Hui, B., Boutilier, C.: Who’s asking for help?: a Bayesian approach to intelligent
assistance. In: Boutilier, C. (ed.) IUI, pp. 186–193 (2006)

9. Fern, A., Natarajan, S., Judah, K., Tadepalli, P.: A Decision-Theoretic Model of
Assistance. In: IJCAI (2007)

10. Dietterich, T.G.: Hierarchical Reinforcement Learning with the MAXQ Value Func-
tion Decomposition. In: JAIR, vol. 13, pp. 227–303 (2000)

11. Tadepalli, P., Givan, R., Drissens, K.: Relational Reinforcement Learning - An
Overview, Workshop on Relational Reinforcement Learning. In: ICML (2004)

12. Jaeger, M.: Relational Bayesian Networks. In: UAI 1997
13. Domingos, P., Richardson, M.: Markov logic networks. Mach. Learn. 62(1-2), 107–

136 (2006)
14. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning Probabilistic Relational

Models. In: Dzeroski, S., Lavrac, N. (eds.) Invited contribution to the book Rela-
tional Data Mining (2001)

15. Kersting, K., De Raedt, L.: Bayesian Logic Programs. In: Cussens, J., Frisch, A.M.
(eds.) ILP 2000. LNCS (LNAI), vol. 1866, Springer, Heidelberg (2000)

16. Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: NIPS
(2001)

17. Fine, S., Singer, Y., Tishby, N.: The Hierarchical Hidden Markov Model: Analysis
and Applications. Machine Learning 32(1), 41–62 (1998)

18. Getoor, L., Grant, J.: A Probabilistic Relational Language, Machine Learning Jour-
nal, 2005. Machine Learning 62(1-2), 7–33 (2006)

19. Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T.G., Fern, A., Restificar, A.:
Learning First-Order Probabilistic Models with Combining Rules. In: Proceedings
of ICML 2005 (2005)

Using Bayesian Networks to Direct Stochastic

Search in Inductive Logic Programming

Louis Oliphant and Jude Shavlik

Computer Sciences Department, University of Wisconsin-Madison

Abstract. Stochastically searching the space of candidate clauses is an
appealing way to scale up ILP to large datasets. We address an ap-
proach that uses a Bayesian network model to adaptively guide search
in this space. We examine guiding search towards areas that previously
performed well and towards areas that ILP has not yet thoroughly ex-
plored. We show improvement in area under the curve for recall-precision
curves using these modifications.

1 Introduction

Inductive Logic Programming (ILP) [3] algorithms search for explanations writ-
ten in first-order logic that discriminate between positive and negative examples.
Two open challenges for scaling ILP to larger domains include slow evaluation
times for candidate clauses and large search spaces in which to find those clauses.
Our work addresses this second challenge using adaptive stochastic search.

Algorithms such as Progol [6] and Aleph [12] also address the second challenge
by constraining the size of the search space using a bottom clause constructed
from a positive seed example. A bottom clause is constructed from a positive
seed by using a set of user-provided modes. The user creates a mode for each
literal in the background knowledge. Modes indicate which arguments of the
literal are input arguments and which are output arguments. As the bottom
clause is being constructed, only literals whose input arguments are satisfied by
the output arguments of literals already in the bottom clause may be added. The
modes create a dependency between the literals of a bottom clause. A literal may
not be added to a candidate clause unless its input arguments appear as output
arguments in some prior literal already in the candidate clause.

Even with these constraints the size of the search space usually is much larger
than can be exhaustively searched. Zelezny et al. [13] have incorporated a ran-
domized search algorithm into Aleph in order to reduce the average search time.
Their rapid random restart (RRR) algorithm selects an initial clause using a
pseudo-uniform distribution and performs local search for a fixed amount of
time. This process is repeated for a fixed number of tries.

Our work builds on top of the RRR algorithm and bottom-clause generation.
We construct a non-uniform probability distribution over the search space that
biases search towards more promising areas of the space and away from areas
which have already been explored or that look unpromising. We use a pair of

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 191–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 L. Oliphant and J. Shavlik

Fig. 1. Pseudo-code showing the Rapid Random Restart (RRR) algorithm and our
modified version of RRR

Bayesian networks to capture this skewed distribution. The structure of the
networks is determined by the bottom clause and the parameters are trained
as ILP’s search progresses. The clauses that are evaluated by the ILP system
become the positive and negative examples for training the Bayesian networks.
The trained networks are then used to select the next initial clause and to modify
the local search portion of RRR.

2 Directed Stochastic Search Algorithm

Zelezny’s RRR algorithm appears in Figure 1 on the top. We have incorporated
a non-uniform distribution into this algorithm in order to bias search towards
more promising areas of the search space. Our modifications appear in Figure 1
on the bottom. In the following subsections we explain our method of modeling
a probability distribution over ILP’s search space, training the parameters of the
model, and using this trained model to modify RRR’s search process.

2.1 Modeling ILP’s Search Space with Bayesian Networks

A Bayesian network [5] is a directed acyclic graphical model that captures a full
joint probability distribution over a set of variables. Each node in the graphical
model represents a random variable. Arcs represent dependencies between vari-
ables. Each node has a probability distribution showing the probability of the
variable given its parents.

ILP’s search space consists of subsets of literals from the bottom clause. A
sample bottom clause appears in Figure 2 on the left. Literals’ arguments have
been annotated with +/- marks to indicate input/output arguments taken from
the user-provided modes. Not all subsets of literals are legal clauses. A clause is
legal and in the search space if the input arguments of each literal in a clause
first appear as output arguments for some literal earlier in the clause.

We capture these dependencies created by the user-provided modes in a graph-
ical model. Figure 2 on the right shows graphically the dependencies found in
the bottom clause. Each node in the network represents a Boolean variable that
is true if the corresponding literal from the bottom clause is included in a can-
didate clause. Each arc represents a connection between the output arguments

Using Bayesian Networks to Direct Stochastic Search 193

Fig. 2. A portion of a Bayesian network built from the literals in a bottom clause. The
+ marks indicate input arguments and the - marks indicate output arguments taken
from the user-provided modes. The head literal is not part of the Bayes net. Arcs
indicate dependencies between the output variables of one literal to the input variables
of another literal. Dotted arcs are dropped to maintain the acyclic nature needed for
Bayesian networks.

of one literal to the input arguments of another literal. Dotted arcs indicate de-
pendencies that are dropped in order to maintain the acyclic nature needed for
Bayesian networks. The structure of the Bayesian network is determined by the
bottom clause while the parameters are learned as ILP’s search progresses.

The algorithm to create the Bayesian network structure from a bottom clause
appears in Figure 3. The algorithm constructs the Bayes net in a top-down
approach. Variable group contains all literals whose input variables are satisfied
by the Head literal or any literal already in the network. The literals in group are
added one at a time to the Bayes net. As the literal is added into the Bayes net
the algorithm connects it to all literals that contain some input variable that is
not contained by the Head literal. Creating a group of literals and adding them
to the network repeats until all literals have been added.

2.2 Training the Model

After creating the Bayesian network structure, we still need to learn the para-
meters of the model. Each node contains a conditional probability table (CPT)
that predicts the probability the node is true given its parents. We estimate
these probabilities from training data collected during ILP’s search.

We construct two networks that have the same graphical structure. The para-
meters of the first network are trained using “good” clauses seen during search,
while the parameters of the second are trained on all clauses evaluated. These
two networks provide probabilities that indicate, respectively, how good a can-
didate clause is and how similar the clause is to past clauses. These distributions
are density estimators indicating the promising areas of the search space and
which areas have already been explored.

The parameters of a node are estimated using ratios of weighted counts be-
tween clauses that contain the literal and those that do not for the various

194 L. Oliphant and J. Shavlik

function construct network(⊥): returns a Bayesian network
input: ⊥, a bottom clause consisting of a Head and Body
bayes net=empty
reached=input variables from Head
while Body is not empty do:

group={l|l ∈ Body and l’s input variables are in reached}
for each lit ∈ group do:

add node(lit,bayes net) /* connects to lit all nodes
in bayes net that satisfy an input
variable of lit*/

Body = Body - group
reached = reached + output variables from group

return bayes net

Fig. 3. Pseudo-code showing the construction of a Bayesian network from a bottom
clause

settings of the parents. We update the parameters during search when a clause
is evaluated on the training data.

The first network, which estimates the probability that a clause is “good,” is
trained using high-scoring clauses. We have tried several methods for deciding
which clauses to use. Our current approach involves using the Gleaner algorithm
[4]. Gleaner retains a set of high-scoring clauses across a range of recall values. All
clauses that are retained in Gleaner’s database are used, along with those clauses
in the trajectory from the initial clause to the one retained in the database. We
use weighted counts (a clause’s F1 score is its weight) with higher-scoring clauses
receiving higher weights. This allows better clauses to have more influence on the
network.

The second network, which estimates the probability that a new clause is
similar to past clauses, is trained on all clauses considered, using a uniform weight
on the clauses. The combination of the probabilities from these two networks will
allow us to trade off exploration of unvisited portions of the hypothesis space
for exploitation of the promising portions.

We have found that some nodes in

Fig. 4. Node with many arguments

our networks have 20 or more parents.
In order to reduce the size of the con-
ditional probability tables, we utilize
a noisy-OR assumption [7]. The noisy-
OR model assumes that all parents of
a node are independent of each other
in their ability to influence the node.
This reduces the size of the CPT to be
linear in the number of parents.

Figure 4 shows a single node whose corresponding literal has several input
arguments. Each argument may be satisfied by one of many parents. We calculate
the probability that a node, N , is true using the formula

Using Bayesian Networks to Direct Stochastic Search 195

P (N = t|Π(N)) =
M∏

j=1

P (N = t|Sj(N)) =
M∏

j=1

⎛
⎝1 −

∏
R∈Sj(N)

P (N = f |R)

⎞
⎠

where Π(N) are the parents of N and Sj is the subset of Π(N) that satisfy
input argument j. The outer product ranges over all M input variables of the
node. This reduces the conditional probability to a product of simpler conditional
probabilities, one for each input argument. The simpler conditional probabilities
are modeled as noisy-ORs. P (N = f |R = f) is set to equal 1 so if any input
argument is not satisfied by at least one parent then that portion of the product,
P (N |Sj(N)), will be zero, making the entire product zero. This limits the clauses
that have a non-zero probability to those that are legal.

2.3 Using the Model to Guide Search

The probabilities provided by the Bayesian networks are incorporated into a
weight that we can attach to clauses. Recall that two networks are created. We
call the probability from the network trained on “good” clauses EXPLOIT
and the probability from a second network trained on all clauses EXPLORED.
We combine these two estimates into a weight for a candidate clause using the
formula

W = α ∗ EXPLOIT + (1 − α) ∗ (1 − EXPLORED)

where 0 ≤ α ≤ 1. We can then set parameter α to trade-off exploration for
exploitation. In order to interleave exploration and exploitation we select α from
a range of values each time an initial clause is selected.

We use the clause weight to modify the RRR algorithm in two ways. The
original RRR algorithm selects an initial clause uniformly. Our modified ver-
sion of RRR performs K hill-climbing runs using the weights generated by the
Bayesian network to guide search. We then select a single initial clause from the
K local peaks by selecting a clause found at one of these peaks. We sample pro-
portional to the weights of the clauses, with the idea that the search will begin
in a higher-scoring and more diverse area of the space. Assigning a weight to a
clause is relatively fast compared to evaluating the clause on the training data.

Next the original RRR algorithm performs a local search around this initial
clause, expanding the highest-scoring clause on the open list and evaluating all of
its neighbors on the training set. Our modified version of RRR attaches a weight
to the neighboring clauses before they are evaluated on the training set and only
a high-weighted subset of size L are retained and evaluated. This reduces the
number of clauses that are evaluated on the training data which are close to
any one initial clause, thus broadening the search and guiding it to areas of the
search space which are more likely to contain high-scoring, unique clauses.

Our algorithm interleaves optimizing using our model and optimizing us-
ing real data. Assigning a weight to a clause using our model is much faster
than evaluating a clause on real data when the dataset is large. We hypothesize
our approach will outperform standard RRR search in terms of area under the

196 L. Oliphant and J. Shavlik

recall-precision curve, when we allow RRR and our modified version to each
evaluate the same number of clauses on real training data.

3 Directed-Search Experiments

We compare our search modifications using the Gleaner algorithm [4] of Goadrich
et al. Following their methodology we compare area under the recall-precision
curves (AURPC) using Gleaner with the standard RRR search algorithm and
with our modified RRR search algorithm.

We evaluated our modifications to the RRR search algorithm on three datasets.
The protein-localization biomedical information extraction dataset [4] contains
7,245 sentences from 871 abstracts taken from the Medline database. There are
over 1,200 positive phrase-phrase relations and a positive:negative ratio of over
1:750. The relations were marked by hand using inter-expert agreement to reduce
the number of incorrectly marked relations.

The gene-disorder dataset also comes from the biomedical information extrac-
tion domain. The dataset originally comes from work by Ray and Craven [9].
Due to memory limitations we scale the dataset by downsampling the abstracts.
The relations in the dataset are marked by a computer algorithm. Our scaled
down version contains 239 positive and 103,959 negative examples.

Finally, the University of Washington dataset contains 113 positive examples
and 2,711 negative examples [10]. The task is to learn the advisor-student re-
lationship. Background information includes facts about papers published and
classes taught.

We assigned the α parameter to be between 0.01 and 0.75 in order to encourage
exploration. The K parameter controlling the number of hill-climbing runs for
each initial clause was set to ten, and the L parameter controlling how many
neighbors of a clause are retained was set to twenty. The internal parameters
of the Bayesian networks were updated as clauses were evaluated. We ran our
experiment using 100 seeds for the two information extraction task and 50 seeds
for the advisor-student task. We evaluated performance after one thousand, ten
thousand, and twenty-five thousand clauses per seed.

Figure 5 shows the AURPC versus the number of clauses evaluated aver-
aged over all five folds of each dataset. Although the improvement is small in
the protein-localization task, it is significant for the first two points at the 95%
confidence level using a paired t test. We also show improvement in the advisor-
student task, however this improvement is not signification. Perhaps this is be-
cause the dataset is smaller, which may cause larger variance between folds. On
the gene-disorder task no improvement is found. One possible reason for this
may stem from the fact that the dataset has a considerable amount of noise due
to the automatic labeling of the data as documented by Ray and Craven [9].
One additional area that may improve performance would be to use a tuning set
for setting the algorithms parameters.

Using Bayesian Networks to Direct Stochastic Search 197

Fig. 5. Comparison on three datasets of AURPC for varying number of clauses con-
sidered using Gleaner with and without a directed RRR search algorithm

198 L. Oliphant and J. Shavlik

4 Related Work

Several other researchers have used models to guide the search process. Pelikan
et al. [8] developed the Bayesian Optimization Algorithm (BOA) which learns
the structure and parameters of a Bayesian network from sampling the search
space and uses the learned model to select a higher-scoring sample. Rubinstein’s
cross-entropy (CE) algorithm [11] comes from the rare-event modeling domain.
It begins by uniformly sampling the search space and then the sample is sorted
and a model is built using the highest ρ-percentile of the sample.

The STAGE algorithm by Boyan and Moore [1] learns an evaluation function
that predicts the outcome of some type of local search, such as hill-climbing or
simulated annealing. Their algorithm iterates between optimizing on real data
and optimizing on the learned model. One final example is taken from the ILP
literature. DiMaio and Shavlik [2] built a neural network to predict a clause’s
score in ILP. They use the clause’s predicated score to modify selection of the
initial clause, as well as to order clauses on the open list.

5 Conclusions and Future Work

Stochastic search of the space of clauses provides a means for ILP to scale to
larger datasets. Our basic approach is to convert the dependency structure found
in Aleph’s modes into two Bayesian networks, whose parameters are trained as
search progresses. These networks are used to influence where in the space of
clauses will be searched next. We have shown improvement on area under the
recall-precision curve experiments on two of three datasets by using this adaptive
stochastic approach.

We plan on improving this approach by refining the structure of the networks
as search progresses. An alternative approach, designing undirected graphical
models that do not need to drop dependencies between literals, will also be
considered. Fitting the parameters of either type of model quickly is impor-
tant to reduce the amount of search. Allowing transfer of parameters from a
model trained using one seed to models trained on some other seed will reduce
the amount of training time needed for the new model. We plan on designing
a mechanism for transferring these parameters. Finally we plan on including
mechanisms to search for diverse clauses more directly, only allowing a clause
to be retained when it is different enough from previously retained clauses. This
should improve the diversity of the set of clauses, viewing the set more as an
ensemble than as a single theory.

Acknowledgements

We would like to thank Mark Goadrich, Jesse Davis, Trevor Walker, and the
anonymous reviewers for comments and suggestions on this work. This project
is funded by DARPA IPTO under contract FA8650-06-C-7606 and DARPA grant
HR0011-04-1-0007.

Using Bayesian Networks to Direct Stochastic Search 199

References

[1] Boyan, J., Moore, A.: Learning Evaluation Functions for Global Optimization
and Boolean Satisfiability. In: Proceedings of the Fifteenth National Conference
on Artificial Intelligence, pp. 3–10 (1998)

[2] DiMaio, F., Shavlik, J.: Learning an Approximation to Inductive Logic Program-
ming Clause Evaluation. In: Proceedings of the 14th International Conference on
Inductive Logic Programming, Porto, Portugal, pp. 80–97 (2004)

[3] Džeroski, S., Lavrac, N.: An Introduction to Inductive Logic Programming. In:
Džeroski, S., Lavrac, N. (eds.) Proceedings of Relational Data Mining, pp. 48–66.
Springer, Heidelberg (2001)

[4] Goadrich, M., Oliphant, L., Shavlik, J.: Gleaner: Creating Ensembles of First-
Order Clauses to Improve Recall-Precision Curves. Machine Learning 64(1-3),
231–261 (2006)

[5] Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, Washington, (revised June 1996)

[6] Muggleton, S.: Inverse Entailment and Progol. New Generation Computing Jour-
nal 13, 245–286 (1995)

[7] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc. San Francisco (1988)

[8] Pelikan, M., Goldberg, D., Cantú-Paz, E.: BOA: The Bayesian Optimization Algo-
rithm. In: Proceedings of the Genetic and Evolutionary Computation Conference,
Orlando, FL, vol. I, pp. 525–532. Morgan Kaufmann Publishers, San Francisco
(1999)

[9] Ray, S., Craven, M.: Representing Sentence Structure in Hidden Markov Mod-
els for Information Extraction. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence (2001)

[10] Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62(1-
2), 107–136 (2006)

[11] Rubinstein, R., Kroese, D.: The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization. In: Monte-Carlo Simulation and Machine Learning,
Springer, Secaucus (2004)

[12] Srinivasan, A.: The Aleph Manual Version 4. (2003), http://web.comlab.ox.
ac.uk/oucl/research/areas/machlearn/Aleph/

[13] Železný, F., Srinivasan, A., Page, D.: Lattice-Search Runtime Distributions be
Heavy-Tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI),
vol. 2583, pp. 333–345. Springer, Heidelberg (2003)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

Revising First-Order Logic Theories from

Examples Through Stochastic Local Search

Aline Paes1, Gerson Zaverucha1, and Vitor Santos Costa2

1 Department of Systems Engineering and Computer Science - COPPE
Federal University of Rio de Janeiro (UFRJ), Brazil

{ampaes, gerson}@cos.ufrj.br
2 LIACC and DCC/FCUP, Universidade do Porto, Portugal

vsc@dcc.fc.up.pt

Abstract. First-Order Theory Revision from Examples is the process
of improving user-defined or automatically generated First-Order Logic
(FOL) theories, given a set of examples. So far, the usefulness of Theory
Revision systems has been limited by the cost of searching the huge
search spaces they generate. This is a general difficulty when learning
FOL theories but recent work showed that Stochastic Local Search (SLS)
techniques may be effective, at least when learning FOL theories from
scratch. Motivated by these results, we propose novel SLS based search
strategies for First-Order Theory Revision from Examples. Experimental
results show that introducing stochastic search significantly speeds up
the runtime performance and improve accuracy.

1 Introduction

A variety of Inductive Logic Programming systems have been developed to au-
tomatically learn First-Order Logic (FOL) theories [11], [4], with good results
on a number of important applications [13,12], [3]. Most such systems are de-
signed to learn theories from scratch, given a set of examples and a fixed body of
prior knowledge, the background knowledge. There has been relatively less work
on the problem of repairing incorrect or incomplete theories. One example of
theories that could be repaired or improved are theories that had been elicited
from a domain expert, and thus may include useful information, but on the
other hand may be incomplete, and/or rely on incorrect assumptions, or even
be inconsistent. A second common example is the case where new examples are
not well explained by the original theory. In such cases standard ILP systems
would take one of the two following positions: they could either discard the ini-
tial theory, or consider it as part of background knowledge which can not be
modified.

Since the task of knowledge acquisition is difficult and time-consuming, and
since the original theory may contain valuable prior information, one would like
to take advantage of the original theory as a start point to the learning process.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 200–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revising First-Order Logic Theories 201

Ideally, this should accelerate learning time and result in more accurate theo-
ries. Theory refinement systems have been proposed towards this goal [15,7].
Such systems assume the initial theory is approximately correct. If so, then only
some points in the theory prevent it from correctly modeling the dataset. The
idea is therefore to search for such points in the theory and revise them in-
stead of using an algorithm that learns a whole new theory from scratch. Note
that these revision algorithms can be seen as a generalization of learning from
scratch, as performed by most ILP systems. However, in contrast to most ILP
systems, theory revision algorithms do not apply cover removal, where clauses
that explain uncovered examples are searched sequentially. Instead, theory revi-
sion algorithms perform search in the space of whole theories. Arguably, cover
removal frequently generate unnecessarily long hypothesis with too many clauses.

Theory revision systems operate by searching for revision points, that is, the
points which explain faults in the theory, and then proposing revisions to such
points, through applying at each point a number of matching revision operators.
Therefore, theory revision can be seen as a search process, and very much as most
ILP algorithms, revising logic programs may need to search a very large search
space and therefore may incur big time and storage requirements. Search space
grows quickly with the size of the knowledge base. We would also expect for search
to be harder if the theory has more faults. Last, theory revision systems are par-
ticularly ambitious in that they tackle whole theories, which is known to be a hard
problem [1].

One possible way of alleviating the huge requirements of searching in the-
ory revision algorithms is to take advantage of clever search strategies such as
stochastic local search (SLS). Such methods have been successfully applied to
solve difficult combinatorial propositional problems [8,10,9] and recently they
have also been applied to learn theories from scratch in ILP systems [5,14], sub-
stantially improving the efficiency of both domains. Motivated by these works
and by the increased combinatorial explosion of searching in entire theories, we
investigate the relevance of applying SLS in a theory revision algorithm. To do
so, we develop algorithms that performs stochastic local search, when proposing
revisions and when searching for a revision to be implemented. Such stochas-
tic theory revision approach is compared to a theory revision algorithm that
performs only greedy hill-climbing search and to a state-of-art ILP system.

The outline of the paper is as follows. Some preliminary knowledge concerning
SLS and theory revision are reviewed in sections 2 and 3, respectively. The
algorithms developed to revise FOL theories from examples through SLS are
devised in section 4. Experimental results are presented in section 5, followed by
conclusions and future work in section 6.

2 Stochastic Search

Stochastic Search algorithms are a family of search algorithms that strongly rely
on randomized decisions while searching for solutions. Stochastic Local search

202 A. Paes, G. Zaverucha, and V.S. Costa

algorithms (SLS) are based on local search techniques. They therefore abandon
completeness in favor of trying to achieve the best exploitation of bounded re-
sources [8]. One major motivation and successful application of SLS has been in
satisfiability checking of propositional formulae, namely through the well-known
GSAT [10] and WalkSAT [9] algorithms. A large number of tasks in areas such
as planning, scheduling and constraint solving can be encoded as a satisfiabil-
ity problem, and empirical observations show that SLS often can substantially
improve their efficiency [2,8].

Several machine learning algorithms can be described as search algorithms.
There has therefore been some interest in applying SLS and related techniques
to this area. Chisholm and Tadepalli [2] used stochastic search to perform rule
learning in their system LERILS and compare its performance to other learning
algorithms, with encouraging results. Again in the area of rule learning, Rückert
et.al. present an SLS algorithm for learning k-term DNFs, that is, theories with
at most k clauses [8]. They proposed a novel SLS algorithm specific for this
task, and evaluated its performance with excellent results.

Stochastic Search in ILP Several Inductive Logic Programming algorithms per-
form search on a vast search spaces, and most of them do include a limited
amount of stochastic search. As an example, Progol-like systems randomly se-
lect examples as seeds to start their search [4,11]. It is therefore unsurprising
that research on stochastic search has taken place since early ILP days [14].

A recent study takes this point further by implementing and evaluating the
performance of several randomization strategies in the ILP system Aleph [14].
The authors use a deterministic general-to-specific search as reference. They
then compare a variety of randomized algorithms. The stochastic strategies were
framed in terms of a single clause search algorithm. The results indicate that the
randomized search strategies outperforms in terms of search space deterministic
clause search across large intervals of the parameter space, and motivates further
research across ILP.

3 First-Order Logic Theory Revision

First-order theory revision is a challenging subject, particularly complex because
we do not revise single clauses; instead we must deal with the issues arising from
including a theory with multiple clauses. Although our studies could be per-
formed on any theory revision algorithm, we choose the FORTE (First Order
Revision of Theories from examples) [7] system to implement and experimen-
tally evaluate our approach. FORTE performs hill-climbing search through a
space of both specialization and generalization operators in an attempt to find
a minimal revision to a theory that makes it consistent with the set of training
examples. The top-level algorithm is exhibited as Algorithm 1. The key ideas
are:

Revising First-Order Logic Theories 203

1. Identify all the revision points in the current theory.
2. Generate a set of proposed revisions for each revision point starting from

the one with the highest potential and working down the list. Potential is
defined as the number of misclassified examples that could be turned into
correctly classified from a revision in that point. The revisions are proposed
through a number of revision operators. In this work we consider Delete-rule
and Add-antecedent as specializations operators and Delete-antecedent and
Add-rule as generalization operators. 1

3. Score each revision through the actual increase in theory accuracy it achieves.
4. Retain the revision which most increases the score.

FORTE stops when the potential of next revision point is less than the score
of the best revision to date. If the best revision really improves the theory it is
implemented. Conceptually, each operator develops its revision using the entire
training set. However, in practice, this is usually unnecessary and thus FORTE
considers only the examples whose provability can be affected after proposing
some revision.

Algorithm 1. FORTE Algorithm (Richards and Mooney, 1995)
1. repeat
2. generate revision points;
3. sort revision points by potential (high to low);
4. for each revision point
5. generate revisions;
6. update best revision found;
7. until potential of next revision point is less than the score of the best revision

to date
8. if best revision improves the theory
9. implement best revision
10. until no revision improves the theory;

4 Stochastic First-Order Logic Theory Revision

Previous research on stochastic search for ILP has focused on clause search
starting from the empty theory. Next, we study whether stochastic search can
improve performance on the theory-level search performed by theory revision
systems. Following WalkSAT and related SLS algorithms, the approaches we
propose perform a local, randomized-walk search, alternating between stochas-
tic and greedy moves with the type of the move to be executed being chosen
according to a prior probability p.

1 There are others operators not used here, such as predicate invention and abduction.
Actually, any operator used in first-order machine learning can be used in a theory
revision system.

204 A. Paes, G. Zaverucha, and V.S. Costa

As observed above, a first major difference between our problem and prior
research is that we need to randomize search over theories. A second major
difference between our problem and prior approaches is that we would not like
to start from a random or empty hypothesis. Instead, we would like to take
advantage of an initial theory provided to the system. In order to choose the
revision to be implemented, theory revision systems such as FORTE proceed in
two steps. First, the system searches for proposed revisions through considering
all revision operators at all revision points. This process can be quite expensive
as some operators must add antecedents, which requires searching through all
possible goals in the database. Next, the revision system chooses the revision
with highest score. This argues for two different phases where one could take
advantage of a randomized strategy:

1. Operator Search: as operator search is dominated by antecedent search, we
may benefit from randomizing antecedent search.

2. Revision search: instead of considering all possible revisions, we may ran-
domize the possible revisions to be implemented.

4.1 Stochastic Local Search for Antecedents

Except for the Delete-Rule operator, all revision operators must search the best
antecedent to add/delete. This suggests using stochastic methods in order to ex-
plore the search space in a more efficient way. Next, we investigate a hill-climbing
stochastic search. We believe that a greedy algorithm could lead to either too
large or too small clauses, as it would run for a fixed number of steps. Therefore,
the search strategies devised here always execute until adding/deleting more
antecedents cannot improve the score. The stochastic version of algorithms for
adding or deleting antecedents is exhibited in Algorithm 2. Such algorithm is
executed into the operations in line 5 in Algorithm 1. FORTE provides two
separate algorithms for producing a specialized clause: hill-climbing antecedent
addition and relational pathfinding. In this work we focus on hill-climbing, as
it is more suitable to most datasets we consider. It is important to notice that
the delete-antecedent operator benefits less from stochastic local search than
add-antecedent, since the search space is restricted to goals in the clause, and is
therefore much smaller.

The process of adding or deleting antecedents using a SLS component starts
by getting all antecedents that could be added (deleted) in (from) a clause cho-
sen as revision point. If the antecedents are being added, the algorithm must
generate all possible antecedents from the database. If they are being deleted, it
is enough to collect the antecedents from the clause. As usual, we can execute
a stochastic or a greedy move, depending upon a fixed probability p1 (addition)
or p2 (deletion). In a stochastic move, an antecedent is chosen at random and
then scored. If this antecedent improves the current score it is added (deleted)
in (from) the clause. Otherwise, another antecedent will be chosen at random. If
the move is greedy, all the antecedents are scored and the one with the highest
score is chosen.

Revising First-Order Logic Theories 205

Algorithm 2. Algorithm for adding/deleting antecedents using hill-climbing
SLS

repeat
get all antecedents;
with probability p1/p2:

choose an antecedent at random whose score improves the current one, and,
add/delete it to/from the clause;

otherwise:
for each antecedent

calculate score;
add/delete to/from the clause the antecedent with the highest score if it
improves the current score of the clause;

until no antecedent can improve the score;

4.2 Stochastic Local Search for Revisions

We propose two algorithms for randomizing revision search. The first algorithm,
greedy, implements greedy stochastic local search. The algorithm stops either
when it reaches a maximum number of steps or when it reaches a maximum score.
The second algorithm, hill-climbing chooses a move at random if it improves the
score, and only if so. The hill-climbing algorithms stops when further revisions
cannot improve the score in the same way FORTE does. The greedy and hill-

Algorithm 3. A greedy SLS theory revision Algorithm
1. while score < maxScore and steps < maxSteps
2. generate revision points;
3. with probability p
4. list all possible revisions from the generated revision points;
5. next revision = a revision chosen at random from the list of possible

revisions;
6. otherwise
7. FORTE Generate and Search revisions procedure
8. next revision = best revision;
9. implements next revision;
10. steps ++;

climbing SLS revision theory algorithms are presented in detail as Algorithms
3 and 4, respectively, where FORTE Generate and Search revisions procedure
corresponds to lines 3 to 7 in Algorithm 1. As usually in SLS methods, the
algorithms do a random move with probability p or do a FORTE-like move with
probability 1 − p.

The two algorithms differ on the random move and on how to terminate. In
the greedy algorithm, a revision is just chosen at random. In the hill-climbing
algorithm, a revision is chosen at random but is only accepted if it actually
improves the score. The two algorithms also differ on their stopping criteria. The

206 A. Paes, G. Zaverucha, and V.S. Costa

greedy algorithm stops on finding a best solution and on time. The hill-climbing
algorithm stops if finding that no revision can actually improve the score, just
like FORTE does. Thus, Algorithm 4 replaces the lines 3-9 in Algorithm 1 while
Algorithm 3 replaces the whole algorithm only because the stopping criteria in
this last case is different from the original FORTE.

Notice that we do not need to explicitly enumerate all possible revisions. In
fact, given a revision point, we know that it either contributes to the misclassifi-
cation of positives, and is therefore a generalization point, to the misclassification
of negatives, and is therefore a specialization point, or to the misclassification
of both negatives and positives, and is therefore both. Thus, given all revision
points and their types, we can estimate the number of possible revisions and
select one at random.

Algorithm 4. A hill-climbing SLS theory revision Algorithm
1. with probability p:
2. list all possible revisions from the generated revision points;
3. next revision = a revision chosen at random from the list of possible revisions

whose score > current ;
4. otherwise:
5. FORTE Generate and Search revisions procedure
6. next revision = best revision;
7. if next revision improves the theory
8. implement next revision;

5 Experimental Results

We performed some experiments in order to evaluate the different approaches
using three ILP benchmarks. The set of experiments aims to answer two main
questions:
1. Does the stochastic revision approach decrease the running time of the stan-

dard revision approach while maintaining or improving the predictive accu-
racy?

2. Is it possible to improve theories obtained from the state-of-art ILP sys-
tem Aleph, escaping from local minima in a reasonable time by applying
stochastic revision algorithms?

Algorithms In this work we analyse the following algorithms. (a) The origi-
nal FORTE; (b) Greedy stochastic revision search plus stochastic antecedents
search (Algorithm 3 plus Algorithm 2); (c) Hill-climbing stochastic revision plus
stochastic antecedent search (Algorithm 3 plus Algorithm 2).

We use Aleph [11], a state-of-art ILP system, as the reference system. Initial
theories were obtained from two experiments:
1. In each fold of a 10 fold cross-validation procedure using 50% of the examples

a theory is generated by Aleph (45% of the examples in the training data

Revising First-Order Logic Theories 207

5% in the test). Then each one of these theories returned by each fold are
revised by the SLS algorithm and respective folds from all examples of the
dataset. That is SLS revises the theory obtained from Aleph using the whole
dataset (obviously without the 10% of the testset).

2. In each fold of a 10 fold cross-validation procedure a theory is generated by
Aleph from all the examples in the dataset. Then each one of these theories
are revised considering their respective fold (i.e., the same folds are used to
generate and revise the theories).

Experimental methodology. We use the following datasets. Mutagenesis is a well-
known domain for predicting structure-activity relationship (SAR). We use here
the ”regression friendly” dataset, as discussed in [13], composed of 188 posi-
tive examples and 42 negative examples. Carcinogenesis is another well-known
domain from SAR for predicting carcinogenic activity in rodent bioassays [12],
with 162 positive examples and 136 negative examples. Alzheimer, compares
analogues of Tacrine, which is a drug against Alzheimer’s disease [3]. In this
work we used only the dataset related to the inhibit amine reuptake property,
composed of 343 positives examples and 343 negative examples.

The experiments were conducted on Pentium4 machines with 1 Gb of RAM
(Mutagenesis), Pentium Dual Core with 2Gb of RAM (Carcinogenesis) and on a
Cluster with Pentium HT machines (Alzheimer). 2 All the algorithms were run
using 10-fold cross validation; additionally, the stochastic algorithms were run
25 times. All the probability parameters were defined as 50%. The maximum
number of steps for algorithm 3 were defined as 5 for Mutagenesis and 10 for
Carcinogenesis and Alzheimer amine, since these two last ones are more complex
domains. 3The hypothesis were evaluated through their accuracy, which is the
same evaluation function used in original FORTE.

Results. Tables 1 and 2 show the values of accuracy and run time returned
by theory revision stochastic algorithms, Aleph and original FORTE. In such
tables, ”SLS HC” means that the stochastic search for revision is hill-climbing
and ”SLS greedy” means that the stochastic search for revisions is greedy. As
stated before both algorithms randomize the search for antecedents. Notice that
we always show the the runtime of the revision algorithms considering the whole
dataset and the predictive accuracy of all algorithms considering the same test
set. The symbol � means that the stochastic algorithm makes a statistically
significant improvement in Aleph and • indicates an improvement over original
FORTE, both considering 95% of significance level. For Alzheimer amine we
run the revision algorithms with and without the relational pathfinding search
for antecedents (the last row of the tables show the results without relational
pathfinding).
2 We had to use three different machines (one machine for each dataset) due to resource

limitations. Note that the algorithms were always evaluated in the same machine for
each dataset.

3 It was not our intention to use the best probability and number of steps parame-
ters. Future work could include using validation sets in an internal cross-validation
procedure to determine the best ones.

208 A. Paes, G. Zaverucha, and V.S. Costa

Table 1. Runtime of Aleph, FORTE and stochastic revision algorithms

Dataset Method Aleph Forte SLS HC SLS greedy
runtime runtime runtime runtime

Mutag.
1 6.59 11.23 5.55 � • 10.12�
2 20.74 6.65 5.93� 10.49�

Carcinog.
1 30.67 4958.72 591.78• 381.89•
2 69.78 4929.16 380.39• 242.11•

Alz amine – PF
1 6.76 493.74 190.97• 253.41•
2 15.58 4362.94 539.74• 519.28•

Alz amine - NPF
1 6.76 509.79 62.31• 105.36•
2 15.58 2710.82 124.58• 121.73•

To answer our first question we can observe from Table 1 that stochastic
search can substantially improve performance compared to the original FORTE,
without loss of accuracy. In the best case, Carcinogenesis over the full training
set, we in fact achieve an order of magnitude improvement in performance. Revi-
sion times go down from almost 5000 seconds to less than 200 seconds. Further,
the results in Table 2 suggest that the stochastic algorithms do not have worse
accuracy than FORTE, and in fact actually improve accuracy over standard
FORTE in a number of cases.

The second question concerns whether theory revision systems can improve
predictive accuracy over the theories generated by a state-of-the art ILP system
such as Aleph. Our results suggest this to be indeed the case, at least for these
benchmarks. In all four cases, the revised theories significantly outperformed the
theories obtained by cover removal.

Table 2. Predictive accuracy of Aleph, FORTE and stochastic revision algorithms

Dataset Method Aleph Forte SLS HC SLS greedy
accuracy accuracy accuracy accuracy

Mutag.
1 77.52 78.08 82.37 � • 78.94�
2 73.08 73.63 79.74 � • 80.16 � •

Carcinog.
1 50.58 54.91 61.60 � • 59.91 � •
2 54.94 59.20 61.84 � • 61.21 � •

Alz amine – PF
1 62.11 63.79 68.13 � • 66.53 � •
2 62.19 72.56 69.56� 66.83�

Alz amine – NPF
1 62.11 62.91 68.57 � • 67.71 � •
2 62.19 72.14 70.59� 68.75�

Our results do not show an advantage in starting from a theory obtained from
half the training examples, or from using the full training-set. Notice that Aleph
itself achieves similar performace in both cases.

Revising First-Order Logic Theories 209

Our results suggest that revision systems can be of interest in improving the-
ories obtained by systems such as Aleph. Moreover, stochastic search appears
as fundamental in reducing the time overhead associated with theory revision.
Revising theories with FORTE can be two orders of magnitude than the initial
Aleph run, and stochastic search reduces this overhead one order of magnitude in
the two most difficult datasets. Even so, theory revision is still quite expensive.
One way towards to achieve further improvements is to use Mode Directed In-
verse Entailment search [4]. Another way is to randomize the search for revision
points. We are enhancing in these ways the algorithms presented here.

We further studied the source of the speedups in more detailed experiments [6],
which are not exhibited here due to space limitations. An interesting issue results
from the observation that we randomize the search for revisions and the search
for which antecedent to consider in a revision point. How do these contribute to
the total running times? The experiments showed that randomising antecedent
search introduces the main benefit, as the number of possible antecedents is is
usually much larger than the number of possible revisions. On the other hand, the
results showed that combining both techniques does perform better than using
either techniques by itself. The results presented here consider the algorithms
executing in this combined way.

6 Conclusions

We designed and evaluated a number of stochastic local search techniques for
the revision of first-order theories. Our results indicate that such techniques can
significantly improve the run-time and even the accuracy of a revision algorithm.
Although much of the benefit comes from reducing the cost of searching new
antecedents to add to a clause in a theory, as this search is quite expensive and
seems to dominate revision costs, benefits are also achieved through randomizing
search from revision operators.

Our current results suggest that improving antecedent generation should be
a major concern in theory revision systems. One interesting future work would
therefore be to constrain this space by using modes and the bottom-clause to
guide the revision process (remembering that FORTE was based on FOIL).

Our results also seem to indicate that stochastic search has the potential
to very significantly improve the performance of theory-revision systems, and
that such improved systems may be useful in improve the theories generated
by Inductive Logic Programming systems. We believe this is because theory re-
vision systems can take a global perspective of theory, in contrast to the local
approach used by the greedy cover-removal algorithms. Moreover, if Theory Re-
vision systems can be made more efficient, this would make it more practical
to revise theories given new examples. The experiments presented here suggest
this may be indeed the case, and that research in this direction may be very
worthwhile.

210 A. Paes, G. Zaverucha, and V.S. Costa

Acknowledgments

The authors are financially supported by CAPES, CNPq and Fundação para a
Ciência e Tecnologia, respectively. We thank Bradley Richards and Raymond
Mooney for making the FORTE system available and Kate Revoredo for useful
discussions.

References

1. Bratko, I.: Refining complete hypotheses in ILP. In: Džeroski, S., Flach, P.A. (eds.)
ILP 1999. LNCS (LNAI), vol. 1634, pp. 44–55. Springer, Heidelberg (1999)

2. Chisholm, M., Tadepalli, P.: Learning decision rules by randomized iterative local
search. In: Proc. of the 19th ICML, pp. 75–82 (2002)

3. King, R.D., Sternberg, M.J.E., Srinivasan, A.: Relating chemical activity to struc-
ture: An examination of ILP successes. New Generation Computing 13(3-4), 411–
433 (1995)

4. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13,
245–286 (1995)

5. Paes, A., Železný, F., Zaverucha, G., Page, D., Srinivasan, A.: ILP through propo-
sitionalization and stochastic k-term DNF learning. In: Muggleton, S., Otero, R.,
Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 379–393.
Springer, Heidelberg (2007)

6. Paes, A., Zaverucha, G., Costa, V.S.: Further results on revising first-order theories
through Stochastic Local Search. In: Technical report, Federal University of Rio
de Janeiro (2007)

7. Richards, B.L., Mooney, R.J.: Automated refinement of first-order Horn-clause
domain theories. Machine Learning 19(2), 95–131 (1995)

8. Rückert, U., Kramer, S.: Stochastic local search in k-term DNF learning. In: Proc.
of the 20th ICML, pp. 648–655 (2003)

9. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26,
521–532 (1996)

10. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satis-
fiability problems. In: Proc. of the 10th AAAI, pp. 440–446 (1992)

11. Srinivasan, A.: The Aleph Manual (2001)
12. Srinivasan, A., King, R.D., Muggleton, S., Sternberg, M.J.E.: Carcinogenesis pre-

dictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297,
pp. 273–287. Springer, Heidelberg (1997)

13. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for mu-
tagenicity: A study in first-order and feature-based induction. Artificial Intelli-
gence 85(1-2), 277–299 (1996)

14. Železný, F., Srinivasan, A., Page, D.: Randomised restarted search in ILP. Machine
Learning 64(1-3), 183–208 (2006)

15. Wrobel, S.: First-order theory refinement. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)

Using ILP to Construct Features for Information

Extraction from Semi-structured Text

Ganesh Ramakrishnan1, Sachindra Joshi1, Sreeram Balakrishnan1,
and Ashwin Srinivasan1,2

1 IBM India Research Laboratory, Block 1, Indian Institute of Technology,
New Delhi 110016, India

{ganramkr, jsachind, srbalakr, ashwin.srinivasan}@in.ibm.com
2 Dept. of CSE & Centre for Health Informatics, University of New Kensington,

Sydney, Australia

Abstract. Machine-generated documents containing semi-structured
text are rapidly forming the bulk of data being stored in an organisation.
Given a feature-based representation of such data, methods like SVMs
are able to construct good models for information extraction (IE). But
how are the feature-definitions to be obtained in the first place? (We are
referring here to the representation problem: selecting good features from
the ones defined comes later.) So far, features have been defined manu-
ally or by using special-purpose programs: neither approach scaling well
to handle the heterogeneity of the data or new domain-specific informa-
tion. We suggest that Inductive Logic Programming (ILP) could assist
in this. Specifically, we demonstrate the use of ILP to define features for
seven IE tasks using two disparate sources of information. Our findings
are as follows: (1) the ILP system is able to identify efficiently large num-
bers of good features. Typically, the time taken to identify the features
is comparable to the time taken to construct the predictive model; and
(2) SVM models constructed with these ILP-features are better than the
best reported to date that rely heavily on hand-crafted features. For the
ILP practioneer, we also present evidence supporting the claim that, for
IE tasks, using an ILP system to assist in constructing an extensional
representation of text data (in the form of features and their values) is
better than using it to construct intensional models for the tasks (in the
form of rules for information extraction).

1 Introduction

The amount of text data available in a machine-readable format is already very
large: Google alone indexes more than 10 billion pages, most of which are text.
This is only expected to increase, as organisations increasingly employ machines
capable of generating semi-structured (XML-like) text data (for example, projec-
tions by IBM in that corporation’s Global Technology Outlook for 2003 suggests
that by 2010, nearly 75% of the data stored in an organisation may of this type).
This trend is accompanied by a substantial industrial impetus to develop auto-
mated methods for extracting information of potential commercial interest from

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 211–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 G. Ramakrishnan et al.

such data. Information Extraction (IE), normally studied under the umbrella of
“text mining” ([10,6]), involves a number of tasks like: sentence segmentation
[22], part of speech tagging [5], noun-phrase coreferencing [24] and named entity
annotation [3]. The principal goal of IE is to extract structured information from
unstructured text documents. This structured information is normally in a form
that can be stored in a database: although modern relational database imple-
mentations allow the direct storage and limited querying of XML-like data, a
representation using attributes (features in the machine-learning sense) remains
the most popular. This makes the data amenable to not just efficient query-
ing, but to a variety of parametric and non-parametric techniques for mining
and modelling (like association-rule mining [1], naive Bayes [17], hidden Markov
models [10], maximum entropy models [3], support vector machine [4] and con-
ditional random fields [13]). These methods construct models using some subset
of the features identified to represent the text.

In this paper, we are concerned with the question of how an appropriate
feature representation is to be arrived at the first place. This is a step before
feature-subset selection: there, once a set of features have been defined, a subset
of them is sought—usually, but not always, with a view of building a good pre-
dictive model. However, obtaining definitions of the features ab initio is a more
complex business. The “feature engineer” has to construct these from some com-
bination of general-purpose and problem-specific information, and, if available,
knowledge of how the features would be used (for example, to build a model
that can discriminate accurately amongst interesting and uninteresting corpo-
rate mergers). This has meant that the task of defining the features has been
one that has largely been manual, or achieved through problem-specific programs
that use the knowledge sources in a pre-defined manner. It is difficult to see how
these approaches could scale-up to meet the demands imposed by the scale and
heterogeneity of text-based data that are being generated, or to incorporate new
sources of information that become electronically available. Our interests are
therefore in automated methods that can assist in this by automatic identifica-
tion of interesting features. We adopt the following positions: (1) Formal logic, at
least with the power embodied within logic programming languages, is adequate
for representing the different kinds of information that are needed for IE; and
(2) Any automatic method for identifying feature definitions that uses a logical
representation has to be at least at the level of first-order logic.

We will ask the reader to take (1) as axiomatic for this paper. Some jus-
tification for (2) on the other hand, follows from the observation that feature
definitions in logic are essentially functions of the form f : X �→ Y , from the
set of individuals X to some more or less arbitrary Y (Y could be the Booleans,
for example). Thus, if these definitions are to be identified automatically, then
the underlying program has to be able to construct functions. This implies any
program for feature engineering must at least be in a position to construct def-
initions in first-order logic (or higher, if composition of functions are needed to
construct complex features; or if the representation of individuals could in turn
employ functions as in [16]).

Using ILP to Construct Features for Information Extraction 213

Arguably the most well-developed and general-purpose programs for con-
structing first-order definitions have been in the area of Inductive Logic Pro-
gramming (ILP). ILP programs are normally, but not exclusively, used to learn
rules (called theories in the literature) in first-order logic to classify examples.
The rules employ predicates provided as background knowledge encoded in some
subset of first-order logic. In this paper, we propose that ILP could be employed
to attain the IE goal of converting unstructured text data to a structured form:
the process we envisage is summarised in Fig. 1.

Converter to
Logical
Form

Background
Knowledge

Any Known
Features

Tokeniser/
Annotator

ILP
System

Converter to
Structured

Form

Structured Text

New Feature Definitions

Annotated Text

Unstructured Text Semi−structured Text

Logical form of Semi−Structured Tex

Fig. 1. A simplified view of a role for ILP in information extraction. The focus of this
paper is on programs, inputs, and outputs to the right of the dotted line.

In the past, several authors have used ILP, or ILP-inspired systems for infor-
mation extraction. Notable amongst these are: the work of Aitken [2] who uses
ILP to construct theories for IE; Califf’s work with with Rapier [7], which is
inspired by bottom-up ILP systems; and the work of Roth and colleagues [23]
who use restricted templates defined by “relation generating functions” to con-
struct features for IE (their motivation for this is that general-purpose ILP
methods are inflexible, making their use impossible in NLP-like domains). Our
results here are intended to add these by providing evidence for the following:
(1) a general-purpose ILP system can efficiently extract useful features for in-
formation extraction; and (2) feature extraction is a more effective way to use a
general-purpose ILP system than the usual process of extracting rules.

Although the use of ILP as a general-purpose mechanism for identifing feature
definitions has a long history (a process termed “propositionalisation”: see [12]
for a detailed survey), and has been shown to be one of the most effective ways to
use ILP to address difficult problems (see for example: [11]), there has not been,

214 G. Ramakrishnan et al.

to the best of our knowledge, any attempt to use them for this purpose in IE. We
believe that there may be two reasons for their neglect in IE. First, ILP has been
perceived as being too inefficient to identify a suitably large set of features that
may be needed to represent documents adequately (for example, [23] use this as
their primary motivation to develop the restricted approach) . Second, it is not
apparent that an automatic feature construction method could match the kinds
of performance achievable by good hand-crafted features. In this paper, it is our
intention to demonstrate using an established test-bed that both these concern
may be unfounded. Specifically, we examine a task in information extraction
concerned with the problem of extracting instances of a structured target schema
from an unstructured text data. The data we use concerns corporate mergers
and acquisitions, from which we intend to extract the names of the acquiring
and acquired companies; and the deal amount (the actual task, described in
Section 3.2 actually involves identifying seven different entities). For this task,
we use a well-known ILP system to identify efficiently a large number—from a
few thousand to ten thousand— good features using two quite different sources
of information (Wordnet [18] and a dependancy parser). The features identified
are used by a standard support vector machine (SVM) classifier to construct
predictive models for the entities of interest. These models—a special kind of the
type proposed by [20]—are compared against the best reported in the literature
(these rely largely on hand-crafted features).

The rest of the paper is organised as follows. Section 2 describes the aspects
of ILP to the extent that it relates to the feature-identification task undertaken
here. Section 3 describes the empirical investigation undertaken in the paper.
This includes a description of aims (Section 3.1), materials (Section 3.2), methods
(Section 3.3) and results (Section 3.4). Section 4 concludes the paper.

2 Feature Definitions Using Inductive Logic
Programming

Given problem-specific data and general-purpose (“background”) knowledge en-
coded in some logical form—normally a subset of first-order logic—an ILP
system attempts to construct models, also in a logical form, for the data. Im-
plementations have been dominated by two classes of programs, corresponding
somewhat to the broader division into supervised and unsupervised learning. The
first class—predictive ILP—is concerned with constructing “theories” (sets of
rules; or first-order logic variants of classification or regression trees) for discrim-
inating accurately amongst two sets of examples (“positive” and “negative”).
The second—descriptive ILP—has is concerned with identifying relationships
that hold amongst the data and the background knowledge a view of discrimi-
nation. More details of the requirements of programs in these two categories can
be found in [19]:

The task of finding the definition of features using a first-order logic represen-
tation is one that is not easily characterised as either predictive or descriptive
ILP. Solutions conceptually involve two steps: (1) a feature-construction step

Using ILP to Construct Features for Information Extraction 215

that identifies (within computational reason) all the features that are consistent
with the constraints provided by the background knowledge. This is character-
istic of a descriptive ILP program; and (2) a feature-selection step that retains
some of the features based on their utility estimated using the problem-specific
data. This is characteristic of a predictive ILP program. A partial specification
for an ILP program that reflects this combination has been recently proposed
in [26], which we follow here (we refer the reader to [21] for definitions of the
logical terms used below):

– B (background knowledge) consists of a finite, possibly empty, set of clauses
= {C1, C2, . . .}

– E (data) consists of a finite set E+ ∪ E− where:
• Positive Examples . E+ = {e1, e2, . . .} is a non-empty set of definite

clauses;
• Negative Examples . E− = {f1, f2 . . .} is a set of Horn clauses (this may

be empty)
– H is the set of definite clauses, constructable with predicates, functions and

constants in B ∪ E; F the set of features constructable using a set of indi-
viduals; and τ : H �→ F a function that maps a definite clause h ∈ H to a
feature f ∈ F .

– F = {f1, f2, . . .} ∈ F , the output of the algorithm given B and E is ac-
ceptable for any set H = {h1, h2, . . .} ∈ H if the following conditions are
met:

• Posterior Sufficiency. B ∪ {hi} |= e1 ∨ e2 ∨ . . ., where {e1, e2, . . .} ⊆ E+

• fi = τ(hi)

The reader would have noted that Posterior Sufficiency requires features con-
structed here use clauses that entail, with B, at least one positive example: this
is not necessarily satisfied by programs that simply seek to identify all features
constructable with predicates, functions and constants in B ∪ E. The features
returned by such programs will be a superset of the features F . Here, we seek
instead to constrain the set F further to return a subset F ′ of F that accounts
for a notion of utility using some predicate Good (effectively, being the same
notion of “interestingness” used in the data-mining literature):

– Utility. F ′ = {f : f ∈ F, and Good(f, B, E) = TRUE}

For the rest, we follow [26] and refer the reader to that paper for details of
F , H and τ . We view the definition of Good as problem-specific, and details for
the empirical study here are provided in Section 3.3. A program that satisfies
these requirements constructs the definition of a feature in the following man-
ner. First, a set of clauses H is identified using the examples and background
knowledge. Each clause is of the form head ← body, where head is a literal and
body a conjunction of literals; and entails at least one positive example, given the

216 G. Ramakrishnan et al.

background knowledge B. Next, each clause hi in H is converted into a boolean
feature fi that takes the value 1 (or 0) for any individual for which the body
of the clause true (if the body is false).1 Thus, the set of clauses H gives rise
to a boolean vector for each individual in the set of examples. An example in
the context of information extraction is shown in Fig. 2, in which the task is
to assign “roles” to individuals. The problem concerns corporate mergers and
acquisitions, and individuals are assigned roles like “purchaser”, “purchased”,
“deal amount” and so on. In the example in Fig. 2, individuals are identified
by the triple 〈d, s, l〉, where d denotes a document, s a sentence in d, and l the
location of a segment in d.

Clause:
∀d, s, l(Has role(d, s, l, purchaser) ←

Has annotation(d, s, l, organisation)∧
After(l, l1)∧
Has hyp sense(d, s, l1, 02incrs0incrm0))

Feature:

f(d, s, l) =

�������
������

Has annotation(d, s, l, organisation)∧
1 After(l, l1)∧

Has hyp sense(d, s, l1, 02incrs0incrm0)
= TRUE

0 otherwise

Fig. 2. Example of a boolean feature constructed from a clause. The clause assigns
the role ‘purchaser’ to any individual (denoted by specific values assigned to variables
d, s and l) that satisfies the conditions in the body of the clause. The meanings of
the predicate symbols Has annotation, After, and Has hyp sense are explained in
Section 3.

3 Experimental Evaluation

3.1 Aims

We intend to investigate the use of an ILP system for automatic feature con-
struction in information extraction. Specifically, using a benchmark dataset, our
primary goals are to examine: (a) Whether the ILP system is able to iden-
tify features efficiently using multiple sources of background knowledge;2 and
(b) Whether the features identified by an ILP system are “good”, measured by
1 The body forms the definition of a “context predicate” in the terminology of [22]
2 In principle, it is evident that an ILP capable of using one source of background

information should be able to use multiple sources as well. However, the sub-optimal
nature of most implementations has meant that this is not necessarily the case in
practice.

Using ILP to Construct Features for Information Extraction 217

comparing the predictive models that are constructed using the features—we will
call the approach “ILP-assisted”—against the best reported models (these use
a combination of hand-crafted and simple automatically constructed features).

3.2 Materials

Data. We use data contained in the “Corporate Acquisition Events” corpus
described in [14]. This is a collection of 600 news articles describing acquisition
events taken from the Reuters dataset. News articles are tagged to identify fields
related to acquisition events. These fields include ‘purchaser’ , ‘acquired’, and
‘seller’ companies along with their abbreviated names (‘purchabr’, ‘acqabr’ and
‘sellerabr’) Some news articles also mention the field ‘deal amount’. Together,
these seven fields define the set of target elements for information extraction
task: we will refer to these fields as “roles” in the rest of the document. In
Table 1, we summarize this information.

Table 1. Examples in the Corporate Acquisitions Events corpus

Role Number of Examples
acquired 651
acqabr 1494

purchaser 594
purchabr 1347

seller 707
sellerabr 458

deal amount 206

Total 5457

Each unstructured text document is first converted to a semi-structured form
using a tokeniser, followed by an annotator. The output of each of these are
then converted automatically into a logical form, which is then part of the data
provided to the ILP system. The details are as follows.

Each unstructured text document contains one or more sentences, each of
which can have several tokens. Tokens are individual words, or groups of words
which have a unique identifier within a sentence in a document. Tokens are then
tagged using a high-recall named entity annotator. We use a rule-based named
entity annotator developed in-house, that produces four different annotations:
‘currency’, ‘date’, ‘location’ and ‘organisation’.

We convert the output of a tokeniser into a logical form that encodes the
location of tokens. This is done using the predicate Has token, resulting in
facts of the form Has token (doc id, sentence id, token id, t). This states that
at there is a token t at location token id within sentence id in document doc id .
For the dataset here, there are approximately 70, 000 statements of this form.
In a similar manner, the results of the annotator are encoded by facts of the

218 G. Ramakrishnan et al.

form Has annotation(doc id, sentence id, token id, a). There are approximately
10, 000 statements of this form.

Examples of roles identified in the text are encoded using the predicate
Has role. The result is a set of facts of the form Has role (doc id, sentence id,
token id, r). Corresponding to the entries in Table 1, there are 651 facts with role
acquired , 1494 with acqabr and so on. The entire corpus used is thus represented
in a logical form by approximately 85, 000 facts.

We further generate “negative examples” for tokens at a position (that is, at
a location in a sentence within a document) in the following manner. First, roles
not assigned to a token at a position are each taken to constitute a negative
example for the token at that position. Second, a token at a position that has
been annotated by the named entity annotator, but does not have a role assigned
to it at that position is marked as having none of the possible seven roles at that
position. This results in approximately in a further 71, 000 facts. The entire
dataset is thus represented by about 156, 000 facts.

Background Knowledge. Background knowledge for the ILP system consists
of logical encodings of the following two sources of information:

Semantic Lexicon. Natural languages provide a rich set of expressions allow-
ing several different ways of expressing the same fact. As an example, the
expression ‘company A purchased company B recently’ and the expression
‘company A recently acquired company B’ mean the same thing. We use
WordNet to help address some of this problem. WordNet is a semantic lexi-
con for the English language. It groups English words into sets of synonyms
called ‘synsets’ and records the various semantic relations between these
synonym sets. We use the hypernym relations within Wordnet to compute
the hypersense of tokens. This requires the following computation. First, the
synsets corresponding to a token are obtained. Hypernyms of each synset
are hyper senses for the token. Further hyper senses can obtained recursively
from hypernyms of the synsets, their hypernyms and so on. We restrict our-
selves to two levels of such recursion. The result is encoded using predicates
of the form: Has hyp sense(doc id, sentence id, token id, s). While any mod-
ern ILP system can compute these facts “on-the-fly”, we pre-compute them
for efficiency. This results in approximately 531, 000 facts.

Dependency Parser. We use MINIPAR [15] to obtain dependency relation-
ships in a sentence. A dependency relationship is an asymmetric relationship
between a token called head or parent and another token called modifier or
dependent. A token in a sentence may have several modifiers, however, it can
modify only a single word. The root of a dependency tree does not modify
any word and is called the head of the sentence. A MINIPAR ‘relationship’
is a label assigned to a dependency relationship between a pair of tokens
in a sentence. Some of the examples relationships used in MINIPAR are
‘subj’ (subject), ‘adjn’ (adjunct), ‘cmpl’ (complement), and ‘obj’ (object).
We generate a set of facts of the following form using the output generated by
MINIPAR: Links(doc id, sentence id, link type, token id 1, token id 2). The

Using ILP to Construct Features for Information Extraction 219

argument Link type can take values from the set of relations used by MINI-
PAR. The arguments token id 1 and token id 2 correspond to the modifier
and the header word respectively. Again, all these facts could be computed
on-th-fly, but are precomputed here. There are approximately 76, 000 facts
of this form.

In addition, we also provide utility predicates After and Before that allow the
ILP program to access locations in the neighbourhood of any given location in
a sentence. The background information is thus represented by about 600, 000
facts.

3.3 Method

Our method for estimating the performance of ILP-assisted approach is straight-
forward:

Repeat N times:
1. Randomly split the data into training (Tr) and test (Te) data;
2. Obtain a set of no more than k features using the ILP program using

background knowledge B;
3. Construct a classificatory model for predicting the roles in Fig. 1 using

a standard classification technique equipped with the features identified
in Step 2 and the data in Tr;

4. Record the performance of the model obtained in Step 3 on the data in
Te;

Estimate the predictive performance of ILP-assisted approach by the mean
values of accuracies obtained in Step 4.
Compare the performance of the models with ILP-assisted approach against
performance of the best models reported in the literature.

The following details are relevant:

(a) We take N to be 5 for our experiments;
(b) k is restricted to 20, 000 for our experiments;
(c) We use the ILP system Aleph (Version 5) [27] for all experiments. This

program has a procedure that constructs features using a non-greedy set
covering approach (we refer the reader to the Aleph manual for details). The
procedure ensures that features are constructed from clauses that satisfy the
Posterior Sufficiency requirement in Section 2. The classificatory model in
Step 3 is obtained using a linear SVM: the specific implementation used is
the one provided in the WEKA toolbox called SMO.3 It can be shown that
the resulting models are a special case of the SVILP models proposed in
[20]. We compare the performance of this model against those constructed
by SRV [9], HMM [10] and Elie [8].

3 http://www.cs.waikato.ac.nz/ ml/weka/

220 G. Ramakrishnan et al.

(d) Satisfying the Utility requirement requires the definition of the predicate
Good. Here, Good is TRUE for clauses (and, by implication, features found
by the ILP system) that entail at least 5 positive examples and have a
precision of at least 0.6. These numbers are arbitrary, but do not seem to
affect the results greatly; The implementation we use is also able to ensure
that this utility requirement is met during its search for features: this is more
efficient than first finding all features and then removing those that fail to
meet the criterion of minimum utility. All other settings for Aleph are at
their default values for feature construction.

(e) Although the utility predicates Before and After allow access to any num-
ber of locations within a sentence, for experiments here we restrict the neigh-
bourhood to no more than 5 locations on either side of a token.

(f) Performance will be measured using the following standard statistics: preci-
sion (P), recall (R), and F1. These are defined as follows: P = TP/PredPos,
where TP is the true positives and PredPos are the numbers of examples
predicted as positive; R = TP/ActPos, where ActPos are the numbers of
examples that are actually positive; and F1 = 2PR/(P + R).

(g) A quantitative comparison of the performance of the ILP-assisted approach
are only possible against Elie (predictions for SRV and HMM are only avail-
able for 3 of the 7 roles, which makes any quantitative statement unreli-
able). For this, we use the Wilcoxon signed-rank test [25]. The test is a non-
parametric test of the null hypothesis that there is no significant difference
between the median F1 performance of a pair of algorithms.

3.4 Results

Figure 3 shows the performance of the classificatory model obtained using ILP-
assisted approach; and Fig. 4 shows the comparative performance of this against
the best reports available. On balance, the signed-rank test suggests that there
is some evidence in favour of the ILP-assisted approach over Elie, although the
difference is not significant (the sum of signed ranks is 14: the critical value for a

Role Performance
P R F1

acquired 51.7 35.2 41.8
acqabr 46.0 39.8 42.6

purchaser 54.7 39.0 45.4
purchabr 42.3 30.8 35.4

seller 52.2 52.1 51.5
sellerabr 25.4 19.5 21.7
dlramt 60.9 47.3 53.0

Fig. 3. Estimates of performance of the ILP-assisted classifier. P, R denote precision
and recall. F1 is the harmonic mean of P and R.

Using ILP to Construct Features for Information Extraction 221

significant difference is 22). Numbers are too small to make a reliable statement
about other comparisons: the odds seem to favour the ILP-assisted approach
over either SRV or HMM. These results suggest that the ILP-assisted approach
is at least as good as the others tabulated.

Comparative assessments of this nature, while valuable, are unrepresentative
of how the ILP-assisted approach is intended to be used in practice. As shown
in Fig. 1, we envisage the features identified by the ILP algorithm to augment
any existing features. It is therefore of more interest to see how a methods like
Elie perform when provided additionally, with the ILP features; or conversely,
providing SMO (the SVM implementation used here to build models with the
ILP features) additionally with the features used by methods like Elie, HMM
and SRV. Unfortunately, we are not able to perform either of these experiments:
executable implementations of Elie, SRV and HMM are not available, and we
are unable to re-construct the definitions of their features from the descriptions
provided in the literature. A surrogate experiment is however possible, that gives
some insight into what may be achievable in practice. We are able to examine
the construction of features by the ILP system without the semantic lexicon and
the dependency parser. This amounts to the ILP system only having access to
the tokeniser, annotator, and the utility predicates Before and After. In such
circumstances, the features constructed will be regular expressions, referring to
the locations of tokens, annotations and gaps. Taking this as a kind of baseline
for either hand-crafted or features that can be constructed (this does not need
a general-purpose ILP system), we are in a position to examine the change in
performance effected by the ILP system as it identifies features by incorporating
background information. From Fig. 5, it is evident that models that use ILP fea-
tures constructed with additional background knowledge do perform better than
the baseline. This suggests that the ability of the ILP system to use background

Role SRV HMM Elie ILP-assisted

acquired 34.3 30.9 42.0 41.8
acqabr 35.1 40.1 40.0 42.6

purchaser 42.9 48.1 47.0 45.4
purchabr −− −− 29.0 35.4

seller −− −− 15.0 51.5
sellerabr −− −− 14.0 21.7
dlramt −− −− 59.0 53.0

Fig. 4. Comparative performance of the
ILP-asssisted approach. Results for three
roles are not reported by SRV and HMM.

Role B B+L B+P B+L+P
acquired 34.5 40.2 41.5 41.8
acqabr 34.5 39.8 42.6 42.6

purchaser 42.5 42.8 45.2 45.4
purchabr 25.0 30.7 29.4 35.4

seller 44.3 48.8 50.6 51.5
sellerabr 19.8 23.2 19.3 21.7
dlramt 49.2 50.3 47.1 53.0

Fig. 5. Comparative F1 values for models
constructed by SMO. “B” refers to models
constructed using baseline features that
are regular expressions on tokens and an-
notations. “L” refers to semantic lexicon
features that use information provided by
Wordnet, and “P” refers to features that
use information provided by the depen-
dency parser MINIPAR.

222 G. Ramakrishnan et al.

information does translate into finding features that can improve predictive per-
formance. If the results in Fig. 5 are representative, then augmenting the baseline
features with ILP features that use all the background information yields im-
provements in the F1 value of 5.5. This can be taken as some indication of the
improvements that may be achievable by augmenting SMO with the features
used by Elie, SRV or HMM.

It is also of some interest to consider for the specific IE tasks considered here
whether it is better to use the ILP-assisted approach proposed; or to use ILP
to construct models that directly predict the roles of individuals in documents
(we will call this “ILP-models”). Evidence that we have suggests the former is
better: see Fig. 6.

Method Performance
ILP-assisted 39.8 ±0.9
ILP-models 35.2 ±1.5

Fig. 6. Average F1 values for models using the ILP-assisted approach and ILP models
that predict roles directly. The averages are weighted averages that account for the
proportions of examples for each role.

We have not commented so far on the efficiency of constructing features using
ILP. Our estimates suggest that in all cases, the time for feature construction
is comparable to the time taken for model construction with the SVM. Some
caveats are needed. Model construction with an SVM is faster than feature con-
struction (but no more than about 5 times) when: (a) the number of features are
small (say about 2000 or so); and (b) the number of classes are small. As either
of these are increased, model construction time was observed to be significantly
greater than the time taken to construct features.

4 Concluding Remarks

In this paper, we have investigated the use of ILP to assist in the task of identi-
fying features for converting text data into a structured form. Our results sug-
gest that an ILP system can effectively amalgamate information from disparate
sources to identify features that can then be used to build good predictive mod-
els for specific IE tasks. The promise of adopting this route rests on two points:
(1) ILP provides a general-purpose setting for feature-construction that uses a
substantially rich subset of first-order logic for representation, and makes explicit
provision for incorporating domain-specific and general-purpose background in-
formation; and (2) features constructed in this manner augment, not replace,
those already known to be effective. In principle, the output of any good model
builder should not get any worse.

While the experimental results are sufficient to demonstrate the feasibility
and the value obtained using an ILP-assisted approach, there are three ways

Using ILP to Construct Features for Information Extraction 223

in which they could be extended immediately. First, similar positive results on
other IE tasks would clearly establish the utility of the approach further. Sec-
ond, we have used a very general-purpose ILP system in our experiments. ILP
implementations that are specifically designed for feature-identification now ex-
ist (these do not lose any of the other generality of ILP). These would provide
more efficient identification of features (and possibly even better ones). Third,
we intend using other knowledge sources such as VerbNet in future work.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pp. 12–15 (1994)

2. Aitken, J.S.: Learning Information Extraction Rules: An Inductive Logic Program-
ming approach. In: Proceedings of the 15th European Conference on Artificial
Intelligence, pp. 355–359 (2002), http://citeseer.ist.psu.edu/586553.html

3. Borthwick, A.: A maximum entropy approach to named entity recognition. PhD
thesis (1999)

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: 5th Annual ACM Workshop on COLT, pp. 144–152 (1992)

5. Brants, T.: Tnt: a statistical part-of-speech tagger. In: Proceedings of the sixth
conference on Applied natural language processing (2000)

6. Bunescu, R., Mooney, R.J.: Relational markov networks for collective information
extraction. In: Proceedings of the ICML-2004 Workshop on Statistical Relational
Learning and its Connections to Other Fields (2004)

7. Califf, M.E., Mooney, R.J.: Relational learning of pattern-match rules for infor-
mation extraction. In: Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing (1998)

8. Finn, A., Kushmerick, N.: Multi-level boundary classification for information ex-
traction. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 111–122. Springer, Heidelberg (2004)

9. Freitag, D.: Toward general-purpose learning for information extraction. In: Pro-
ceedings of the Thirty-Sixth Annual Meeting of the Association for Computational
Linguistics (1998)

10. Freitag, D., McCallum, A.K.: Information extraction with hmms and shrinkage.
In: Proceedings of the AAAI 1999 Workshop on Machine Learning for Informatino
Extraction (1999)

11. King, R.D., Srinivasan, A., DeHaspe, L.: WARMR: A Data Mining Tool for Chem-
ical Data. Computer Aided Molecular Design 15, 173–181 (2001)

12. Kramer, S., Lavra, N., Flach, P.: Propositionalization approaches to relational data
mining. Springer, New York (2000)

13. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. 18th International
Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

14. Lewis, D.D.: Representation and learning in information retrieval. PhD thesis
(1992)

15. Lin, D.: Dependency-based evaluation of minipar. In: Workshop on the Evaluation
of Parsing Systems (1998)

16. Lloyd, J.W.: Logic for learning: Learning comprehensible theories from structured
data. Cognitive Technologies Series. Springer, Heidelberg (2003)

http://citeseer.ist.psu.edu/586553.html

224 G. Ramakrishnan et al.

17. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text
classification. In: AAAI 1998 Workshop on Learning for Text Categorization (1998)

18. Miller, G.: Wordnet: A lexical database for english. Commun. ACM 38(11) (1995)
19. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.

Journal of Logic Programming 19(20), 629–679 (1994)
20. Muggleton, S.H., Lodhi, H., Amini, A., Sternberg, M.J.E.: Support Vector Induc-

tive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS
2005. LNCS (LNAI), vol. 3735, pp. 163–175. Springer, Heidelberg (2005)

21. Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer, Berlin (1997)

22. Reynar, J.C., Ratnaparkhi, A.: A maximum entropy approach to identifying sen-
tence boundaries. In: ANLP, pp. 16–19 (1997)

23. Roth, D., Yih, W.t.: Relational learning via propositional algorithms: An informa-
tion extraction case study. In: IJCAI, pp. 1257–1263 (2001)

24. Sang, E.F.T.K., Daelemans, W., Déjean, H., Koeling, R., Krymolowski, Y., Pun-
yakanok, V., Roth, D.: Applying system combination to base noun phrase identi-
fication. In: COLING, pp. 857–863 (2000)

25. Siegel, S., Castellan Jr, N.J.: Nonparametric Statistics for The Behavioral Sciences.
McGraw-Hill, New York (1956)

26. Specia, L., Srinivasan, A., Ramakrishnan, G., Nunes, M.G.V.: Word sense disam-
biguation using ilp. In: 16th International Conference on Inductive Logic Program-
ming (2006)

27. Srinivasan, A.: The Aleph Manual (1999), http://www.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph/

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

Mode-Directed Inverse Entailment

for Full Clausal Theories

Oliver Ray1 and Katsumi Inoue2

1 University of Bristol, United Kingdom
oray@cs.bris.ac.uk

2 National Institute of Informatics, Japan
ki@nii.ac.jp

Abstract. Mode declarations are a successful form of language bias in
explanatory ILP. But, while they are heavily used in Horn systems, they
have yet to be similarly exploited in more expressive clausal settings.
This paper presents a mode-directed ILP procedure for full clausal logic.
It employs a first-order inference engine to abductively and inductively
explain a set of examples with respect to a background theory. Each
stage of hypothesis formation is guided by mode declarations using a
generalisation of efficient Horn clause techniques for inverting entailment.
Our approach exploits language bias more effectively than previous non-
Horn ILP methods and avoids the need for interactive user assistance.

1 Introduction

Mode declarations [7] are an important form of language bias in explanatory ILP.
They are a convenient way to define the hypothesis space searched by prominent
systems like Progol [7] and Aleph [14]. These systems use a type of Mode Directed
Inverse Entailment (MDIE) [7] to construct and generalise a clause, called a
Bottom Set [7], which bounds an otherwise intractable search space by acting
as a syntactic and semantic ‘bridge’ between examples and hypotheses. But,
while the practical utility of MDIE has been convincingly shown in Horn clause
applications of ILP, so far, no methods have been studied for lifting MDIE to the
more expressive setting of full clausal logic. This work aims to show the feasibility
and necessity of such a generalisation and to thereby enable the representation
and discovery of indefinite and disjunctive knowledge in explanatory ILP.

This paper presents a mode directed proof procedure for full clausal ILP. It
uses a first-order inference engine called SOLAR [9] to implement a full clausal
extension of an MDIE approach called HAIL [11]. HAIL combines abductive
and inductive reasoning to construct and generalise a multi-clause variant of the
Bottom Set called a Kernel Set [11]. SOLAR is an efficient tool for computing
the deductive consequences of a given theory that satisfy a vocabulary known
as a Production Field [2]. We use SOLAR to provide a full clausal realisation
of HAIL, called fc-HAIL, by lifting the principles of MDIE from Horn clauses
to general clauses. By exploiting language bias more effectively than previous

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 225–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 O. Ray and K. Inoue

non-Horn explanatory ILP methods, fc-HAIL avoids the need for interactive user
assistance. The utility of fc-HAIL is illustrated by a case study in fluid modelling.

The paper is structured as follows: Section 2 reviews the relevant background
material; Sections 3 and 4 present our case study and the fc-HAIL approach;
Section 5 compares fc-HAIL with related work; and Section 6 concludes.

2 Background

2.1 Notation and Terminology

This paper assumes a first-order language L with connectives ∧ , ∨ , ¬ , ← , → ,
↔ , logical constants �, ⊥, and a classical entailment relation |=. A literal L is
either an atom A or its negation ¬A. The complement of L, denoted L, is defined
as ¬A (resp. A) if L = A (resp. ¬A). A clause C is an (ordered) disjunction of
literals L1 ∨ . . . ∨ Lm. For convenience, we write Li ∈ C to denote that Li is
among the disjuncts of C, and we write D ⊆ C to denote that every disjunct
of D is also a disjunct of C. The empty clause is denoted �. All variables are
implicitly universally quantified at the front of the clause. A clause is Horn iff it
has at most one positive literal and is full otherwise. A clause D subsumes C,
written D ≥ C, iff there exists a substitution θ such that Dθ ⊆ C. Moreover,
D is said to properly subsume C iff D ≥ C but C �≥ D. A theory T is an
(implicitly conjoined) set of of clauses. A theory S subsumes T , written S ≥ T ,
iff each clause in T is subsumed by at least one clause in S. We are concerned
with the following concrete task of explanatory ILP [7]: given theories B, E+

and E−, find a theory H such that B ∧ H |= E+ and B ∧ H ∧ E− �|= ⊥. We
will also require H to satisfy some additional syntactic constraints, specified by
a set M of mode declarations, as defined below.

2.2 Mode Declarations

Mode declarations are a well known form of language bias in ILP that are central
to this paper. As defined in [7], a mode declaration m is either a head declaration
modeh(r, l) or a body declaration modeb(r, s) where r is an integer (the recall)
and s is a ground literal (the scheme) which can contain the place-marker terms,
#, + and −. Each scheme can be regarded as a ‘template’ with the place-markers
standing for constants, input variables and output variables, respectively. The
distinction between input and output variables is given by the restriction that
any input variable in a body literal must be an input variable in the head or an
output variable in some preceding body literal [7].

In this way, a set M of mode declarations is associated with a set of clauses
LM , called the language of M , such that C = L1 ∨ L2 ∨ . . . ∨ Ln ∈ LM

iff L1 (resp. each Li for some 1 < i ≤ n) is obtained from some head (resp.
body) declaration in M by replacing all # place-markers with constants and
by replacing all + (resp. −) place-markers with input (resp. output) variables.
The schema of a mode declaration m is denoted schema(m) and defined as the

Mode-Directed Inverse Entailment for Full Clausal Theories 227

literal obtained from the scheme of m by replacing all place-markers by distinct
variables. As explained in [7], the recall of a mode declaration is used to bound
the number of times the scheme can be used (with the same sequence of input
variables). An arbitrary recall is often denoted by an asterix ∗. In general, each
place-marker can be optionally annotated by a predicate. which restricts the
type of terms that may legally replace it, but, for simplicity, we will not consider
type predicates in this paper.

Traditionally, mode declarations are used to specify Horn hypotheses, where
the first (i.e., head) literal of the clause is always positive and the remaining (i.e.,
body) literals are all (implicitly) negative. The idea is to build hypothesis clauses
incrementally from left to right starting with the head literal and then adding
successive body literals. In the full clausal case, we will use mode declarations in
exactly the same way. The only difference is that the head literal can be positive
or negative and so can the body literals. But, to avoid any potential confusion,
we will hereafter use the notation modef (i.e., mode first) instead of modeh, and
moder (i.e., mode rest) instead of modeb, to emphasise that we are referring to
the first literal and the remaining literals in a clause.

Example 1. If M = {modef(∗, ¬p(+, +)), moder(∗, q(+, −)), moder(∗, r(+, +))}
then ¬p(X, Y) ∨ q(Y, Z) ∨ r(Z, Y) ∈ LM but ¬p(a, Y) ∨ q(Z, Y) ∨ q(Z, Y) �∈
LM (as the first literal has a constant instead of a variable, the second has an
output variable instead of an input variable, and the third has the wrong sign).

2.3 MDIE (Mode Directed Inverse Entailment)

MDIE [7] is a mode-directed ILP approach (used by several prominent systems
such as Progol and Aleph) based on the semantics of Bottom Generalisation
(BG) [7]. The principle is to explain an example clause E relative to a background
theory B by constructing and generalising an intermediate clause called a Bottom
Set [7] of B and E. Intuitively, the Bottom Set provides a syntactic and semantic
bridge between the example and hypothesis and it serves to bound a hypothesis
space that would otherwise be intractable to search. The main formal definitions
and results, recalled from [7], are summarised below:

– a Bottom Set of B and E is a ground clause L1 ∨ . . . ∨ Ln such that
B ∧ ¬Eσ |= ¬Li for all 1 ≤ i ≤ n and for some Skolemising substitution σ

– a (Skolem-free) clause H is said to be computed by BG from B and E iff
there exists a Bottom Set C of B and E such that H ≥ C

– for any clause H computed by BG from B and E it holds that B ∧ H |= E

While BG is defined for full clauses, MDIE is restricted to the Horn case.
MDIE uses a mode-directed BG procedure within an ILP cover loop that selects
seed examples E from a set E+ of positive examples and ensures hypotheses
H are consistent with a set E− of negative examples. It uses a set M of mode
declarations to heavily constrain the BG process. MDIE was first defined for Ob-
servation Predicate Learning (OPL) [8], but was later extended to the non-OPL

228 O. Ray and K. Inoue

setting using an approach called Theory Completion by Inverse Entailment
(TCIE) [8]. This is a three phase method where, for each seed example E:

– a Bottom Set head literal is computed using a contrapositive reasoning
method to find those head declaration instances that entail Eσ

– some Bottom Set body atoms are computed using a query driven saturation
process to find those body declaration instances that are entailed by ¬Eσ

– a hypothesis is computed by a lattice based generalisation procedure using a
top down search of the subsumption lattice bounded by the Bottom Set. A
compression heuristic is used to search for consistent hypotheses that contain
few literals and cover many positive examples

While it is one of the most successful ILP methods to date, MDIE has two
key limitations: it can only infer one clause for each seed example and it only
applies to Horn clauses. As argued in Section 3, these restrictions can limit
the effectiveness of MDIE in practice. The first issue has been addressed in an
extension of MDIE called HAIL [11]. This paper goes on to tackle the second issue
by proposing a full clausal realisation of HAIL based on a first-order inference
engine called SOLAR [9]. HAIL and SOLAR are now briefly summarised.

2.4 HAIL (Hybrid Abductive Inductive Learning)

HAIL [11] is a mode-directed approach for realising the semantics of Kernel
Set Subsumption (KSS) [12], which is based on a multi clause extension of the
Bottom Set, called a Kernel Set [12]. KSS can be seen as a tractable extension
of BG which is necessary in some applications. As explained in [12]:

– a Kernel Set of B and E is a ground theory K =
⋃n

i=1 Li
0 ∨ Li

1 ∨ . . . ∨ Li
mi

such that B ∧ (L1
0 ∧ . . . ∧ Ln

0) |= Eσ and B ∧ Li
j |= Eσ for all 1 ≤ i ≤ n

and 1 ≤ j ≤ mi for some Skolemising substitution σ
– a (Skolem-free) theory H is said to be computed by KSS from B and E iff

there exists a Kernel Set K of B and E such that H ≥ K
– for any theory H computed by KSS from B and E it holds that B ∧ H |= E

The Kernel Set plays an identical role to the Bottom Set by serving as an inter-
mediate ground hypothesis that bounds the search space of an anti-subsumption
generaliser. Moreover, HAIL is based on a three phase methodology which is
directly analogous to MDIE in that:

– the contrapositive reasoning method of MDIE is replaced by a more general
abductive procedure which can return solutions with more than one atom

– the query driven MDIE saturation process is applied, in turn, to each atom
abduced in the previous step

– the MDIE compression-based search procedure is used to greedily generalise,
in turn, each Kernel Set clause constructed above

By integrating abduction and induction in this way, HAIL overcomes some
practical limitations of MDIE, such as an incompleteness of its contrapositive
procedure and its inability to infer more than one clause for each example [10].

Mode-Directed Inverse Entailment for Full Clausal Theories 229

2.5 SOLAR (SOL Resolution for Advanced Reasoning)

SOLAR is a proof procedure for clausal consequence finding [2]. It is based on
Skip Ordered Linear (SOL) resolution [2], which can be seen as extending the
Model Elimination calculus [6] with a rule for ‘skipping’ or ‘assuming’ literals.
Since the closure of a theory is often infinite, SOLAR computes the so-called
characteristic clauses [2], which are subsume-minimal consequences that satisfy
a form of language bias known as a production field [2].

A production field P is a pair P = 〈Lits, Cond〉 with a set of literals Lits and
a condition Cond. The language LP of P is the set of clauses whose literals are
instances of Lits and which satisfy Cond. In practice, Cond simply constrains
certain properties of the clause such as its length and depth. If Cond is empty,
we write P = 〈Lits〉. If Th(T) is the deductive closure of a theory T , and μT is
the set of clauses in T not properly subsumed by another clause in T , then the
characteristic clauses of T wrt P are defined as Carc(T, P) = μ(Th(T) ∩ LP).

As explained in [2] and [4] SOL deductions are formally defined using the
notion of a structured clause, which is a pair 〈A, B〉 consisting of two clauses A

and B, where the latter may contain so-called framed literals of the form L
denoting previously resolved literals. Definition 1 is now recalled from [4].

Definition 1 (SOL Deduction). Let T be a theory, S be a clause, and P be
a production field. An SOL deduction of S from T and P (of length n) is a
sequence of structured clauses D0, . . . , Dn satisfying rules 1-6 below.

1. D0 = 〈�, C〉 for some clause C ∈ T .
2. Dn = 〈S, �〉.
3. For each Di = 〈Ai, Bi〉 clause Ai ∪ Bi is not a tautology.
4. For each Di = 〈Ai, Bi〉 clause Bi is not subsumed by any Bj with the empty

substitution, where Dj = 〈Aj , Bj〉 is a previous structured clause with j < i.
5. For each Di = 〈Ai, Bi〉 clause Ai belongs to P .
6. Di+1 = 〈Ai+1, Bi+1〉 is obtained from Di = 〈Ai, Bi〉 as follows:

(a) let L be the left-most literal of Bi. Then Ai+1 and Ri+1 are obtained by
applying one of the rules:
i. Skip: if Ai ∪ {L} belongs to P , then Ai+1 = Ai ∪ {L} and Ri+1 is

the clause obtained by removing L from Bi.
ii. Resolve: if there is a clause Ei from T ∪ {C} such that ¬K ∈ Ei

and L and K have a most general unifier θ, then Ai+1 = Aiθ and
Ri+1 is the clause obtained by concatenating Eiθ and Biθ, framing
Lθ, and removing ¬Kθ.

iii. Factoring: if Ai or Bi contains an unframed literal K such that L
and K have a most general unifier θ, then Ai+1 = Aiθ and Ri+1 is
obtained from Biθ by deleting Lθ.

iv. Reduction: Bi contains a framed literal ¬K , and L and K have a
most general unifier θ, then Ai+1 = Aiθ and Ri+1 is obtained from
Biθ by deleting Lθ.

(b) Bi+1 is obtained from Ri+1 by deleting every framed literal not preceded
by an unframed literal in the remainder (truncation).

230 O. Ray and K. Inoue

The utility of SOL lies in the fact that many tasks such as abduction and query
answering [13,4] can be reduced to the computation of characteristic clauses.
Moreover, if LP is closed under the inclusion of subsuming clauses, then P is
said to be stable [2] and SOL can compute clauses in Carc(T, P) under some effi-
cient pruning strategies (such as regularity for skipped literals, order preserving
reduction, lemma matching, and local failure caching [5]). These strategies are
all incorporated into the implementation of SOLAR used in this paper, which
we will use to provide a full clausal implementation of HAIL.

3 Motivating Example: Fluid Modelling

One benefit of non-Horn ILP is that domain knowledge can be easily formalised
in first-order logic and automatically translated into clausal form. This simplifies
the knowledge engineering process by affording a more direct and less error prone
formulation of prior knowledge. Another benefit is that non-Horn ILP enables
the exploitation and discovery of disjunctive and indefinite concepts, which may
be useful in some applications. We illustrate these ideas in Example 2 below.

Example 2. This example concerns the flow of a liquid under gravity through a
vertical system of pipework consisting of valves and branches. As illustrated in
Figure 1, each valve has two points of connection, a top and a bottom, and it
has a state which can be open or not open. Intuitively, water will flow from the
top of the valve to its bottom if the valve is open (e.g. v1), but not otherwise
(e.g. v2). By contrast, branches have three points of connection, a top, a bottom
and a side. Ordinarily, water will flow from the top of a branch to its bottom
(e.g. b2), but will be forced out of the side if it cannot flow out of the bottom
(e.g. b1). A system of valves and branches is constructed by connecting the top
of a branch or valve to the bottom or side of another branch or valve. Any
unconnected points are designated inlets or outlets.

To model the behaviour of a fluid flowing through a system of pipework, it
is convenient to introduce the notions of source and sink. Intuitively, a source
is a point into which fluid will flow from an inlet, while a sink is a point from
which fluid would discharge into an outlet.1 A formal model of these concepts is
given by the domain theory D in Figure 2. It shows 12 first-order implications
(which are implicitly conjoined and universally quantified at the front). The first
2 implications formalise the behaviour of valves. They say the bottom of a valve
is a source iff the top is a source and the valve is open; and vice versa. The next
4 formulae refer to branches. They say the bottom is a source iff the top is a
source; the side is a source iff the top is a source and the bottom is not a sink;
the top is a sink iff the bottom or side is a sink; and a branch is always open.
For any connected points X and Y , X is a source (resp. sink) iff Y is a source
(resp. sink). Finally, an inlet (resp. outlet) is a source (resp. sink) which has no
incoming (resp. outgoing) connections.

1 If a point is a source and a sink, then fluid is flowing through there (e.g. side(b1)).
If it is a source but not a sink, then fluid is stagnating there (e.g. bottom(b1)).

Mode-Directed Inverse Entailment for Full Clausal Theories 231

top

bottom side

top

bottom

v1

v2 v3

v4

b1

b2

inlet

outlet

outlet

outlet

(b) branch

(a) valve

(c) pipework

Fig. 1. Valves, branches, and pipework layout for Example 2

The component and connection information for Figure 2 is given by the sce-
nario description S in Figure 3, which is a conjunction of 15 ground atoms. Note
how this description does not include the state of each valve as we wish to in-
duce a hypothesis specifying precisely this. In particular we seek a hypothesis
specifying which valves are open in order to explain the observation that fluid is
flowing from the bottom of branch b2. If we suspect the valve state may depend
upon whether its bottom is an outlet or not, and we require that v4 is not open,
then we have the learning problem in Figure 4. Given this task, we would like
to learn the hypothesis H stating that a valve is open iff its bottom is not an
outlet. It is easy to check H ∈ LM and a classical theorem prover can verify
B ∧ H |= E+ and B ∧ H ∧ E− �|= ⊥. Thus H is a correct ILP hypothesis.

Transforming B to clausal form is a trivial operation that results in 21 Horn
clauses and 2 non-Horn clauses, all with no more than 4 literals. One of the non-
Horn clauses is sink(bottom(X))∨ sink(side(X)) ← sink(top(X))∧ branch(X).
This clause is produced by the 5th formula in D, which models the preferential
behaviour of a fluid to flow through the bottom of a branch instead of the side. It
says the top of a branch is a sink only if the bottom or the side of the branch is a
sink. This knowledge is disjunctive: if the top is a sink, then we know either the
bottom is a sink or the side is a sink but, without further information, we may not
know which. Given the non-Horn nature of B and H , a full clausal ILP approach is
needed to solve this problem. Given the strong bias specified by M , this approach
should utilise M in the learning process.

232 O. Ray and K. Inoue

valve(X) → (source(bottom(X)) ↔ open(X) ∧ source(top(X)))
valve(X) → (sink(top(X)) ↔ open(X) ∧ sink(bottom(X)))

branch(X) → (source(bottom(X)) ↔ source(top(X)))
branch(X) → (source(side(X)) ↔ source(top(X)) ∧ ¬sink(bottom(X)))
branch(X) → (sink(top(X)) ↔ sink(bottom(X)) ∨ sink(side(X)))
branch(X) → (open(X))

connect(X, Y) → (source(Y) ↔ source(X))
connect(X, Y) → (sink(X) ↔ sink(Y))

inlet(X) → (source(X))
inlet(X) → (¬connect(Y, X))

outlet(X) → (sink(X))
outlet(X) → (¬connect(X, Y))

Fig. 2. Domain knowledge (D) for Example 2

branch(b1) ∧ branch(b2)
valve(v1) ∧ valve(v2) ∧ valve(v3) ∧ valve(v4)

inlet(top(v1))
outlet(bottom(b2)) ∧ outlet(bottom(v2)) ∧ outlet(bottom(v4))

connect(bottom(v1), top(b1))
connect(bottom(b1), top(v2))
connect(side(b1), top(v3))

connect(bottom(v3), top(b2))
connect(side(b2), top(v4))

Fig. 3. Scenario description (S) for Example 2

B = D ∪ S

E+ = {source(bottom(b2))}

E− = {¬open(v4)}

M =

�
modef(∗, open(+))
modef(∗, ¬open(+))

�
∪

��
�

moder(∗, outlet(bottom(+)))
moder(∗, ¬outlet(bottom(+)))
moder(∗, ¬valve(+))

��
�

H =

�
open(X) ∨ outlet(bottom(X)) ∨ ¬valve(X).
¬open(X) ∨ ¬outlet(bottom(X)) ∨ ¬valve(X).

�

Fig. 4. Inputs (B, E+, E−, M) and Output (H) for Example 2

Mode-Directed Inverse Entailment for Full Clausal Theories 233

4 Full Clausal Hybrid Abductive Inductive Learning

This section explains how SOLAR can be used to lift the HAIL methodology
from the Horn case to full clausal logic. In particular, it describes how SOLAR is
used in each phase of the HAIL learning cycle to implement the reasoning tasks
of abduction and query answering, as well as coverage and consistency checking.
Hereafter, we will write Solar(T, P) to denote the set of consequences returned
by SOLAR for a theory T and production field P . To ensure termination, we
also assume an implicit bound on the depth of any resolution derivation.

First we explain how SOLAR can be used for abduction in order to compute
the head literals of a Kernel Set. Given a background theory B, Skolemised seed
example Eσ, and mode declarations M , this involves computing a unit theory
Δ = {L1, . . . , Lm} such that B ∧ Δ |= Eσ and each Li is an instance of a head
declaration scheme in M . This is equivalent to the following abductive task.
Given a theory T , a ground clause C (called a goal) and a set of literals Ls
(whose instances are called abducibles), find a theory Δ (explanation) such that
T ∧ Δ |= C, each literal Li is subsumed by a literal in Ls. We are interested
in the subsume-minimal explanations, as these lead to smaller Kernel Sets that
are easier to generalise.

From previous work [2] and [9] it is known that SOLAR can compute such
explanations by simply negating the characteristic clauses of the theory T ∧ ¬C
and production field P = {L | L ∈ Ls}. Furthermore, if Ls is closed under
instantiation, then P will be stable and these clauses can be efficiently computed
under the pruning strategies described in [5]. But, we wish to use the head
declarations to constrain the function symbols appearing in any abduced literals,
which will violate the stability requirement of SOL and lead to incompleteness.

Example 3. If B = {p ∨ ¬a(X, Y) ∨ ¬q(X) ∨ ¬q(Y)}∪{q(0)}∪{q(1)} and E = p
and M = {modef(1, a(0, 1))}, then the only stable production fields which give
the explanation Δ = {a(0, 1)} by the method in [2] must contain ¬a(X, Y). But
these also allow the explanations a(0, 0), a(1, 0), and a(1, 1), which violate M .
By contrast, the unstable production field P = 〈{a(0, 1)}〉 gives no solutions
according to Definition 1, even though Δ is still a correct hypothesis.

To avoid an inefficient generate-and-test approach, we developed a way to trans-
form an unstable production field into an equivalent stable one. In this way, we
constrain the abduced atoms without compromising the completeness of SO-
LAR.The transformation is based on the introduction of a new predicate pL to
represent each literal L in Ls. One clause expressing the relationship between pL

and L is added to T along with the negation of C; and one maximally general
instance of pL is then added to the production field P = 〈Ms〉. Any bindings
computed by SOLAR are propagated back to the literals they represent. The
result is a set S of minimal abductive explanations. This is formalised in the
Abduce procedure below, which is sound and complete for computing subsume-
minimal abductive explanations (although it does not necessarily guarantee the
consistency of Δ and T , since a stronger consistency check must be performed
by fc-HAIL in any case).

234 O. Ray and K. Inoue

Procedure Abduce(T, C, Ls)
initialise B = T ∪ {G | G ∈ C}; Ms = ∅; S = ∅
for each literal L ∈ Ls with variables X1, . . . , Xn {

let pL be a fresh predicate of arity n

let B = B ∪ {L ∨ pL(X1, . . . , Xn)}
let Ms = Ms ∪ {pL(X1, . . . , Xn)}

}
let P = 〈Ms〉
for each clause Δ ∈ Solar(B, P) {

let S = S ∪ {{Lσ | L ∨ pL(X1, . . . , Xn) ∈ B and pL(X1, . . . , Xn)σ ∈ Δ}}
}
return S

Our next task is to use SOLAR to implement the query answering engine used
to compute the Kernel Set body literals. Given a theory T and a literal G, we
wish to compute the instances of G that are entailed by T . From previous work
[4], it is known SOLAR can efficiently compute such instances using the method
of Answer Literals [1]. As formalised in the Query procedure below, this involves
the use of a literal ans(X1, . . . , Xn) to represent the variables X1, . . . , Xn in G.
The production field P is set to return any bindings to these literals (the length
restriction avoids the computation of unnecessary disjunctive answers [15]). The
bindings D are extracted from the literals computed by SOLAR and propagated
back into the goal literal G to obtain the instances A of G entailed by T .

Procedure Query(T, G)
let C = G ∨ ans(X1, . . . , Xn) where X1, . . . , Xn are the variables in G

let P = 〈{ans(X1, . . . , Xn)}, length ≤ 1〉
let S = Solar(T ∪ {C}, P)
let D = {{X1/t1, . . . , Xn/tn} | ans(t1, . . . , tn) ∈ S}
let A = {Gσ | σ ∈ D}
return A

The Query procedure is utilised in a full clausal generalisation of the Progol
Bottom Set procedure [7], which uses a theory T and a set M of mode declara-
tions to saturate a given head literal L with body literals up to some variable
depth bounded by an integer d. As formalised in the Saturate procedure below,
it maintains a growing set of input terms I that are used to replace + place-
markers in the body declaration schemes. This results in a set of queries whose
successful instances result in the insertion of new body literals to the clause X
being constructed and the addition of new terms to I. Aside from the fact it uses
a full clausal query engine, this is exactly the same procedure used by MDIE
systems such as Aleph and Progol.

Mode-Directed Inverse Entailment for Full Clausal Theories 235

Procedure Saturate(T, L, M)
let X = {L}
let D be a head declaration in M whose schema subsumes L

let I be the set of terms in L corresponding to + place-markers in D

for each integer i from 1 up to some depth d {
for each body declaration C in M {

let Q be the set of literals obtained from the scheme S of C by
replacing all + place-markers by terms from I (in all possible ways)
and replacing all other place-markers by distinct variables
let A =

⋃
q∈Q Query(T, q)

add to X all literals in A

add to I all terms in A corresponding to −place-markers in C

}}
return X

All these procedures are used in the fc-HAIL learning cycle, formalised below.
Like Progol, it uses a covering loop to incrementally construct a hypothesis H
using one uncovered example E at a time to focus the generalisation process.
Here, we note that coverage and consistency checking can easily be performed
by SOLAR since a theory T is inconsistent iff ∅ ∈ Abduce(T, ∅, ∅); and a theory
T entails a clause C iff T ∧ ¬C is inconsistent.

If it is non-ground, the seed example E is Skolemised by a substitution σ
binding each variable to a fresh constant. A minimal abductive explanation Δ
is then computed for the goal Eσ using the abducibles obtained from the head
declaration schemas. Each atom of Δ is saturated with instances of the body
declaration schemas to obtain a Kernel Set K. This is generalised to obtain a
consistent subsuming hypothesis H .2

Procedure fcHAIL(B, E+, E−, M)
let H = ∅
let Ls be the set of head declaration schemas
while B ∪ H does not cover E+ {

let E be any seed example E ∈ E+ not covered by B ∪ H
let σ be any Skolemising substitution for E
let Δ be any abductive explanation Δ ∈ Abduce(B ∪ H, Eσ, Ls)

that is consistent with B ∧ H ∧ E+ ∧ E−

let K be the Kernel Set K =
⋃

L∈Δ Saturate(T ∪ {Xσ | X ∈ E}, L, M)
add to H any consistent hypothesis H ′ where H ′ ∈ LM and H ′ ≥ K

}
return H

2 We currently perform this generalisation by applying the Progol A∗ search procedure,
in turn, to each clause in K. This ensures that, in the Horn case, we always compute
a hypothesis equally or more compressive than any answer returned by Progol.

236 O. Ray and K. Inoue

Example 4. Consider B, E+, E− and M in Figure 4. Applying fc-HAIL, we have
Ls = {¬open(X), open(X)}. We must choose E = source(bottom(b2)). As E is
ground we have σ = ∅. There is one consistent minimal abductive explanation

Δ = {open(v1), ¬open(v2), open(v3)}
which results in the unique Kernel Set

K =

⎧⎨
⎩

open(v1) ∨ outlet(bottom(v1)) ∨ ¬valve(v1).
¬open(v2) ∨ ¬outlet(bottom(v2)) ∨ ¬valve(v2).
open(v3) ∨ outlet(bottom(v3)) ∨ ¬valve(v3).

⎫⎬
⎭

As required, this is subsumed by the hypothesis

H =
{

open(X) ∨ outlet(bottom(X)) ∨ ¬valve(X).
¬open(X) ∨ ¬outlet(bottom(X)) ∨ ¬valve(X).

}

Termination of fc-HAIL is ensured by bounding various parameters such as the
number of abducibles in Δ and the depth of resolution derivations. This also
ensures the worst case time complexity of HAIL is polynomial in n.

5 Related Work

Previous work on inverse entailment can be partitioned into two classes: (A)
efficient and incomplete Horn clause systems, which use greedy covering loops
and strong forms of language and search bias, such as Progol [7] and Aleph [14];
and (B) inefficient but complete full clausal approaches, which use weaker forms
of language and search bias, such as CF-Induction [3] and the Residue Procedure
[17]. We see fc-HAIL as applying the efficient Horn techniques in (A) to the more
expressive full clausal setting of (B). We now use Example 2 to briefly compare
fc-HAIL with these related approaches.

Progol and Aleph are direct Horn implementations of the MDIE methodology
described in Section 2.3. Given the inputs B, E+, E− and M in Figure 4, they
cannot compute H as (i) B and H contain non-Horn clauses, (ii) it is necessary
to infer two hypothesis clauses in order to explain a single example clause, and
(iii) H does not entail any Bottom Set of B and E.

CF-Induction computes hypotheses by generalising a theory F obtained by
negating a set CC of instances of characteristic clauses of B ∧ ¬E. In our
example, the smallest possible theory F from which CF-Induction can infer the
hypothesis H is shown below.

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

open(v1) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).

¬open(v2) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).

open(v3) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Mode-Directed Inverse Entailment for Full Clausal Theories 237

The theory F is much larger than the Kernel Set K and is therefore harder
to generalise. Moreover, CF-Induction must work correspondingly harder than
HAIL to construct F . In this case, CF-Induction computes a total of 32 char-
acteristic clauses of which 7 must be selected (by the user, from a menu) for
CC, while HAIL computes 1 explanation and executes 6 ground queries. This
suggests that fc-HAIL is able to make more effective use of language bias than
CF-Induction. By contrast, the Residue Procedure, which does not include any
form of language bias, must generalise a Residue Hypothesis that is too large to
be included in this paper. However, CF-Induction and the Residue Procedure
both overcome an inherent incompleteness of MDIE, identified in [16], that is
only partially addressed by fc-HAIL. In particular, just like Progol and Aleph,
fc-HAIL is unable to solve the Horn clause example presented in [16].

6 Conclusions

This paper proposed a mode directed ILP procedure, called fc-HAIL, for full
clausal logic. In particular, it used the SOLAR consequence finding engine to
implement the HAIL learning cycle in a way that directly generalises efficient
MDIE techniques from Horn clause logic to the more expressive general case.
In this way, fc-HAIL exploits language bias more effectively than previous work
on non-Horn ILP and removes the need for interactive user assistance. This
was achieved, in part, by showing how to overcome the restriction to stable
production fields that is assumed in all previous work on SOL. For this purpose,
we introduced an efficient transformation that results in only one extra resolution
step per abduced atom. A generalisation of this transformation has since been
developed to allow full clausal abduction with non-ground abducibles, disjunctive
answer extraction, and consistency checking [13].

The potential utility of fc-HAIL was illustrated with a case study modelling
the flow of a fluid through a system of pipework. This example suggests that
fc-HAIL’s ability to automatically compute multi-clause non-Horn hypotheses
in response to a single example may be beneficial in practice. We believe that
non-Horn ILP will be useful in real applications to enable the representation and
discovery of indefinite and disjunctive knowledge. We intend to test this claim
using fc-HAIL by extending our model of fluid flow into a model of metabolic
flux in biochemical networks. We also aim to better understand the trade-offs
between expressivity and efficiency by investigating stronger forms of bias and
more powerful inference methods capable of overcoming the incompleteness of
fc-HAIL and other methods noted in [16].

Acknowledgements

This work is supported by Research Councils UK (RCUK) and the Japan Society
for the Promotion of Science (JSPS). The authors thank the reviewers for their
useful comments.

238 O. Ray and K. Inoue

References

1. Green, C.: Theorem-proving by resolution as a basis for question-answering sys-
tems. Machine Intelligence 4, 183–205 (1969)

2. Inoue, K.: Linear resolution for Consequence Finding. Artificial Intelligence 56(2-
3), 301–353 (1992)

3. Inoue, K.: Induction as Consequence Finding. Machine Learning 55(2), 109–135
(2004)

4. Iwanuma, K., Inoue, K.: Minimal answer computation and SOL. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
245–257. Springer, Heidelberg (2002)

5. Iwanuma, K., Inoue, K., Satoh, K.: Completeness of Pruning Methods for Conse-
quence Finding Procedure SOL. In: Proceedings of the 3rd International Workshop
on First-Order Theorem Proving, pp. 89–100 (2000)

6. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam (1978)

7. Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing, Spe-
cial issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

8. Muggleton, S.H., Bryant, C.H.: Theory Completion Using Inverse Entailment. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146.
Springer, Heidelberg (2000)

9. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A Consequence Finding System
for Advanced Reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003.
LNCS, vol. 2796, pp. 257–263. Springer, Heidelberg (2003)

10. Ray, O.: Hybrid Abductive-Inductive Learning. PhD thesis, Dept. of Computing,
Imperial College (2005), http://www.bcs.org/upload/pdf/oray.pdf

11. Ray, O., Broda, K., Russo, A.M.: Hybrid Abductive Inductive Learning: a Gener-
alisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI),
vol. 2835, pp. 311–328. Springer, Heidelberg (2003)

12. Ray, O., Broda, K., Russo, A.M.: Generalised Kernel Sets for Inverse Entailment.
In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 165–179.
Springer, Heidelberg (2004)

13. Ray, O., Inoue, K.: A consequence finding approach for full clausal abduction. In:
Proceedings of the 10th International Conference on Discovery Science (to appear,
2007)

14. Srinivasan, A.: The Aleph Manual (version 4) (2003), http://web.comlab.ox.
ac.uk/oucl/research/areas/machlearn/Aleph/index.html

15. Stickel, M.E.: A Prolog technology theorem prover: A New Exposition and Imple-
mentation in Prolog. Theoretical Computer Science 104(1), 109–128 (1992)

16. Yamamoto, A.: Which hypotheses can be found with Inverse Entailment? In:
Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 296–308. Springer,
Heidelberg (1997)

17. Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypothe-
ses. Theoretical Computer Science 298, 5–19 (2003)

http://www.bcs.org/upload/pdf/oray.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef U/msb/m/n/5 {OT1/cmr/m/n/9 }U/msb/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef U/msb/m/n/5 {OT1/cmr/m/n/9 }U/msb/m/n/5 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/index.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/index.html

Mining of Frequent Block Preserving

Outerplanar Graph Structured Patterns

Yosuke Sasaki1, Hitoshi Yamasaki1, Takayoshi Shoudai1,
and Tomoyuki Uchida2

1 Department of Informatics, Kyushu University
Fukuoka 819-0395, Japan

{yosuke.sasaki,h-yama,shoudai}@i.kyushu-u.ac.jp
2 Department of Intelligent Systems, Hiroshima City University

Hiroshima 731-3194, Japan
uchida@cs.hiroshima-cu.ac.jp

Abstract. An outerplanar graph is a planar graph which can be em-
bedded in the plane in such a way that all of vertices lie on the outer
boundary. Many semi-structured data like the NCI dataset having about
250,000 chemical compounds can be expressed by outerplanar graphs. In
this paper, we consider a data mining problem of extracting structural
features from semi-structured data. First of all, we define a block pre-
serving outerplanar graph pattern as an outerplanar graph having struc-
tured variables. Then, we present an effective Apriori-like algorithm for
enumerating frequent block preserving outerplanar graph patterns from
semi-structured data in incremental polynomial time. Lastly, by report-
ing some preliminary experimental results on a subset of the NCI dataset,
we evaluate the performance of our algorithms.

Keywords: pattern discovery, graph mining, graph structured pattern,
outerplanar graph.

1 Introduction

Large amount of data having graph structures, called semi-structured data, such
as map data, CAD, biomolecular, chemical molecules, the World Wide Web are
stored in databases. In the fields of Web mining and graph mining, many Web
documents and many chemical compounds can be represented by ordered trees
and outerplanar graphs, respectively. For example, 94.3% of all elements in the
NCI dataset [4], which is one of popular graph mining datasets, are expressed
by outerplanar graphs. Outerplanar graphs are planar graphs which can be em-
bedded in the plane in such a way that all of vertices lie on the outer boundary.
In Fig. 1, we give four outerplanar graphs G, g1, g2, g3 as examples of outerpla-
nar graphs. In analyzing semi-structured data, we must often solve a subgraph
isomorphism problem, which is known to be NP-complete in general. However,
subgraph isomorphism problems on some classes of graphs, including trees and
biconnected outerplanar graphs, can be solved in polynomial time [2,5]. More-
over, graph isomorphism problems tend to be easier than subgraph isomorphism

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 239–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 Y. Sasaki et al.

x

zy

Graph pattern p

Graph G

Graph g
1

Graph g
2

Graph g
3

u
1

v
1

v
2

v
3

v
4 v

5

u
2

u
3

u
4

u
5

Fig. 1. Outerplanar graphs G, g1, g2, g3 and a block preserving outerplanar graph
pattern p. A variable is drawn by a box with lines to its elements. The label inside a
box represents a variable label.

problems and are computed in polynomial time for the classes of interval graphs,
circular-arc graphs, and planar graphs.

Based on these facts, in this paper, we consider a graph mining problem
of extracting structural features from semi-structured data having outerplanar
graph structures. In order to solve this graph mining problem, first of all, we
define a new graph pattern, called a block preserving outerplanar graph pattern
(bpo-graph pattern for short) as a connected outerplanar graph having structured
variables. A variable is a list of at most 2 vertices and can be replaced with an
arbitrary connected outerplanar graph.

We say that a bpo-graph pattern p matches an outerplanar graph G if G is
obtained from p by replacing all variables with arbitrary connected outerplanar
graphs. In Fig. 1, as an example of bpo-graph patterns, we give a bpo-graph
pattern p having variables (v1, v2), (v3, v4), (v5) labeled with variable labels
x, y, z, respectively. The bpo-graph pattern p matches the outerplanar graph G
in Fig. 1 obtained by replacing variables (v1, v2), (v3, v4), (v5) with outerplanar
graphs g1, g2, g3, respectively.

Our goal of this paper is to present an effective algorithm of enumerating all
frequent bpo-graph patterns from a given finite set D of outerplanar graphs. It
is natural that for a given finite set D of outerplanar graphs, bpo-graph pat-
terns, which are frequent with respect to the number of outerplanar graphs in D
which are matched by p, are characteristic in D. As our approaches, in a similar
way to a block and bridge tree given in [1], we introduce a block tree t(G) and
a block tree pattern t(p) according to an outerplanar graph G and a bpo-graph
pattern p, respectively. Then we reduce a problem of deciding whether or not a

Mining of Frequent Block Preserving Outerplanar Graph 241

bpo-graph pattern p matches an outerplanar graph G to a problem of deciding
whether or not the tree pattern t(p) corresponding to p matches the tree t(G)
corresponding to G. By giving an Apriori-like algorithm of generating candidate
block tree patterns, we enumerate all frequent bpo-graph patterns in incremental
polynomial time.

Horváth et al. [1] proposed an Apriori-like algorithm, which works in incre-
mental polynomial time, for enumerating frequent subgraphs appearing in a re-
stricted class of outerplanar graphs, called d-tenuous outerplanar graphs. Then
by applying their algorithm to the NCI dataset [4], they found typical subgraph
structures of chemical compounds. Yamasaki and Shoudai [10] proposed an in-
terval graph pattern and presented a polynomial time algorithm for finding a
minimally generalized interval graph pattern explaining a given finite set of in-
terval graphs. As other related works, in the framework of inductive inference,
by Suzuki et al. [7] and Takami et al. [8] gave polynomial time learning al-
gorithms for tree patterns with internal structured variables and two-terminal
series parallel graph patterns, respectively.

This paper is organized as follows. In Section 2, we introduce a graph pattern
based on [9] and, in Section 3, a bpo-graph pattern as an outerplanar graph hav-
ing structured variables. In Section 4, we propose a polynomial time algorithm
which solves a matching problem between bpo-graph patterns and outerplanar
graphs. In Section 5, we propose an Apriori-like algorithm which enumerates all
frequent bpo-graph patterns from a finite set of outerplanar graphs. Lastly, by
reporting an experimental result of applying our algorithms to a subset of the
NCI dataset, we evaluate the performance of our algorithm.

2 Graph Pattern

For a set and a list S, the number of elements in S is denoted by |S|. Let Λ
and Δ be two alphabets each of whose elements is called a vertex label and an
edge label , respectively. Let X be an infinite alphabet with X ∩ (Λ ∪ Δ) = ∅.
An element in X is called a variable label . In this paper, an undirected graph
G is called a (Λ, Δ)-labeled graph if all vertices and edges in G are labeled with
symbols in Λ and Δ, respectively. We denote by V (G) the set of vertices in G
and by E(G) the set of edges in G. In the same way as a term graph presented
in [9] which can represent characteristic common structures in graph-structured
data, we define a graph pattern as follows.

Definition 1 (Graph pattern). A triplet p = (V, E, H) is called a (Λ, Δ)-
graph pattern if (V, E) is a (Λ, Δ)-labeled graph and H is a set of lists of distinct
vertices in V . For a (Λ, Δ)-graph pattern p, we denote by V (p), E(p) and H(p)
the sets of all vertices, edges and variables of p, respectively. For a vertex v of
p, we assign a vertex label λp(v) ∈ Λ to v, that is, λp is a vertex labeling from
V (p) to Λ. For an edge e of p, we also assign an edge label δp(e) ∈ Δ to e, that
is, δp is an edge labeling from E(p) to Δ. An element in H is called a variable
of p and each vertex in a variable is called a port of the variable. For example,
for a variable h = (v1, v2, . . . , v�) ∈ H , v1, v2, . . . , v� are pots of h. If a variable

242 Y. Sasaki et al.

has only one port, it is called a terminal variable, otherwise called an internal
variable. All variables in H are labeled with variable labels in X .

Below (Λ, Δ)-labeled graphs and (Λ, Δ)-graph patterns are simply called labeled
graphs and graph patterns, respectively, when the label sets Λ and Δ are clear
from the context. The degree of v, denoted by dp(v), is the total sum of edges
adjacent to v and internal variables including v, that is dp(v) = |{{u, v} | {u, v} ∈
E(p)} ∪ {h | h ∈ H(p), |h| = 2, h contains v}|.

A graph pattern p is called a linear (or regular) graph pattern if all variables
in H(p) have mutually distinct variable labels in X . Let p and q be linear graph
patterns. We say that p is isomorphic to q if there exists a bijection ψ : V (p) →
V (q) such that (1) for any v ∈ V (p), λp(v) = λq(ψ(v)), (2) {u, v} ∈ E(p)
if and only if {ψ(u), ψ(v)} ∈ E(q), (3) for any {u, v} ∈ E(p), δp({u, v}) =
δq({ψ(u), ψ(v)}), and (4) (v1, . . . , v�) ∈ H(p) if and only if (ψ(v1), . . . , ψ(v�)) ∈
H(q), where � ≥ 1.

We assume that all graph patterns in this paper are linear. Then we call linear
graph patterns graph patterns simply.

Definition 2 (Binding and Substitutions). Let p and q be graph patterns
and x a variable label in X . Let σ = (u1, . . . , uk) be a list of k distinct vertices in
q. The form x := [q, σ] is called a binding for x. We can apply a binding x := [q, σ]
to a variable h = (v1, . . . , v�) in p which is labeled with x if the binding x := [q, σ]
satisfies that (1) � = k and (2) λq(ui) = λp(vi) for all i (1 ≤ i ≤ � = k). A new
graph pattern p{x := [q, σ]} is obtained by applying the binding x := [q, σ] to
p in the following way. Let h = (v1, . . . , v�) be a variable in p with the variable
label x. Let q′ be one copy of q and u′

1, . . . , u
′
k the vertices of q′ corresponding to

u1, . . . , uk of q, respectively. For the variable h = (v1, . . . , v�), we attach q′ to p
by removing the variable h from H(p) and by identifying the vertices v1, . . . , v�

with the vertices u′
1, . . . , u

′
k of q′, respectively.

A substitution is a finite collection of bindings {x1 := [q1, σ1], · · · , xm :=
[qm, σm]}, where x1, . . . , xm are mutually distinct variable labels in X . For a
graph pattern p and a substitution θ, pθ denotes the graph pattern obtained
from p and θ by applying all the bindings in θ to p simultaneously.

Below we regard all labeled graphs as graph patterns without variables. As an
example of graph patterns, in Fig. 1, we give a graph pattern p having variables
(v1, v2), (v3, v4), (v5) labeled with x, y, z, respectively, so that the graph pattern
p{x := [g1, (u1, u2)], y := [g2, (u3, u4)], z := [g3, (u5)]} is isomorphic to the graph
G in Fig. 1 where g1, g2, g3 are labeled graphs in Fig. 1.

3 Block Preserving Outerplanar Graph Patterns and
Block Tree Patterns

Let G be a connected labeled graph. For a subset U of V (G), the induced sub-
graph of G by U , denoted by G[U], is a subgraph G[U] = (U, {{u, v} ∈ E(G) |
both u and v are in U}) of G. For a vertex v in V (G), v is called a cutpoint of

Mining of Frequent Block Preserving Outerplanar Graph 243

G if G[V (G) − {v}] is unconnected. G is said to be biconnected if G has no cut-
point. A maximal connected subgraph without a cutpoint is called a block (or a
biconnected component). An edge which does not belong to any block is called
a bridge. An outerplanar labeled graph is a planar labeled graph which can be
embedded in the plane so that all vertices lie on the border of the same face. We
denote by O the set of all outerplanar labeled graphs. Since any block B of an
outerplanar labeled graph has a unique cycle which contains all vertices of B,
we call the cycle of B the Hamiltonian cycle of B. A diagonal is an edge in B
which is not in the Hamiltonian cycle of B. Consider an example of blocks given
in Fig. 2. The block B has four diagonals {u2, u4}, {u2, u7}, {u4, u7}, {u5, u7}.

In order to make our discussion simpler, we assume that all outerplanar la-
beled graphs are connected. We can easily extend our results of this paper to
the case without the assumption.

Definition 3 (Block preserving outerplanar graph patterns). A graph
pattern p is a block preserving outerplanar graph pattern (bpo-graph pattern for
short) if p satisfies the following three conditions.

1. Any internal variable has just 2 ports.
2. (V (p), E(p) ∪ {{u, v} | (u, v) ∈ H(p)}) is an outerplanar labeled graph.
3. Each port of any internal variable in p is either a cutpoint or a vertex whose

degree is just one.

Since all internal variables in a bpo-graph pattern are bridges in Gp, we call an
internal variable in a bpo-graph pattern a bridge variable. For example, a graph
pattern p in Fig. 1 is a bpo-graph pattern and two variables (v1, v2) and (v3, v4)
of p are bridge variables. We denote by OP the set of all bpo-graph patterns.
For a bpo-graph pattern p ∈ OP and an outerplanar labeled graph G ∈ O, we
say that p matches G if there exists a substitution θ such that pθ is isomorphic
to G.

Horváth et al. [1] proposed a special data structure, called a block-bridge tree,
for representing connections among blocks of an outerplanar labeled graph. In
a similar way to a block-bridge tree, for a bpo-graph pattern p, we define a new
tree-structured pattern, called a block tree pattern of p as follows.

Definition 4 (Block tree patterns and block trees). Let p be a bpo-graph
pattern in OP and B(p) the set of all blocks of p. For each block B of p, we
assign a new vertex not in V (p) to B which is denoted by vB and is called a
block vertex of B. A block tree pattern of p, denoted by t(p), is a graph pattern
(Vp, Ep, Hp), where

Vp = V (p) ∪ {vB | B ∈ B(p)},

Ep =

⎛
⎝E(p) −

⋃
B ∈ B(p)

E(B)

⎞
⎠ ∪

⋃
B ∈ B(p)

{{vB, v} | v ∈ V (B)}, and

Hp = H(p).

244 Y. Sasaki et al.

y

x

z

Block tree t(G)

Block tree pattern t(p)

Block tree t(g
1
)

Block tree t(g
2
)

Block tree t(g
3
)

u
1

v
1

v
2

v
3

v
4

v
5

u
2

u
3

u
4

u
5

α

γ

β

κ

α
α

α β

βγ

κ

w1

w2

w3

w4w5

w6

w7

[([], β), ([(4, β), (7, γ)], α), ([], β),
([(7, α)], κ), ([(7, γ)], α), ([], κ), ([], α)]

B A block label of B

Fig. 2. Block trees t(G), t(g1), t(g2), t(g3), the block tree pattern t(p), a block B and
its block label. A block vertex is drawn by a double circle.

Let “#” be a symbol not in Λ ∪ Δ. We define vertex labels of t(p) as follows:
λt(p)(v) = λp(v) if v ∈ V (p), λt(p)(v) = # otherwise. In a similar way, we define
edge labels of t(p) as follows: δt(p)(e) = δp(e) if e ∈ E(p), δt(p)(e) = # otherwise.
We call a block tree pattern without variables a block tree, simply.

For example, for the bpo-graph pattern p and outerplanar labeled graphs G, g1,
g2, g3 given in Fig. 1, we give the block tree pattern t(p) of p and block trees
t(G), t(g1), t(g2), t(g3) of G, g1, g2, g3 in Fig. 2, respectively.

We note that any block in a bpo-graph pattern has the unique Hamiltonian
cycle. Hence, for a block B in a bpo-graph pattern p, we can index all vertices
of B in the clockwise or anticlockwise order of the Hamiltonian cycle of B. That
is, by specifying a vertex in V (B), called a start vertex , and a rotation direction
of the Hamiltonian cycle of B, e can easily construct a numbering function ρB

from V (B) to the set {1, 2, . . . , |V (B)|}. Hereafter, for a vertex v of a block
B, we also use the number ρB(v) instead of v as a vertex identifier. For example,
for a block B given in Fig. 2, ρB(wi) = i for each i (1 ≤ i ≤ 7) if all vertices are
numbered in the clockwise order of the Hamiltonian cycle of B from the vertex
w1. In the case of the anticlockwise order, ρB(w1) = 1 and ρB(wi) = 9 − i for
each i (2 ≤ i ≤ 7).

Mining of Frequent Block Preserving Outerplanar Graph 245

Let B be a block having � vertices. For any i (1 ≤ i ≤ �), we suppose
that the vertex i is adjacent to ki diagonals {i, j1}, {i, j2}, . . . , {i, jki} in B,
where 0 ≤ ki ≤ � − 3 and i ≤ j1 < j2 < · · · < jki ≤ �. Then, for a
block vertex vB of B, we define a block label of vB, denoted by μp(vB), as a
list [(φp(1), δp({1, 2})), (φp(2), δp({2, 3})), . . . , (φp(�), δp({�, 1}))], where for each
i (1 ≤ i ≤ �), φp(i) = [(j1, δp({i, j1})), (j2, δp({i, j2})), . . . , (jki , δp({i, jki}))]. For
example, let p be a bpo-graph pattern having a block B given in Fig. 2 as a
subgraph. For a block vertex vB of B, the block label μp(vB) of vB is the list
[([], β), ([(4, β), (7, γ)], α), ([], β), ([(7, α)], κ), ([(7, γ)], α), ([], κ), ([], α)].

4 Matching Algorithm for Block Preserving Outerplanar
Graph Patterns

Let p and p′ be bpo-graph patterns in OP , and r and r′ vertices of p and p′,
respectively. Let t(p, r) be an unordered tree obtained from t(p) by specifying
r as a root. For each block B in p, the block labels of t(p, r) are constructed
from μp(vB) by regarding the nearest vertex from r in B as a start vertex of
the Hamiltonian cycle of B. The new block label of a block vertex vB in t(p, r)
is denoted by μp(vB , r). We denote by μ̄p(vB, r) the block label obtained from
μp(vB , r) by changing the rotation direction of the Hamiltonian cycle. We say
that t(p, r) is equivalent to t(p′, r′) if there exists an isomorphism ψ from t(p, r)
to t(p′, r′) such that r′ = ψ(r) and for all block vertices vB in t(p, r), either
μp(vB , r) = μp′(ψ(vB), r′) or μp(vB, r) = μ̄p′(ψ(vB), r′) holds. We say that t(p)
is equivalent to t(p′) if there exists two vertices r in p and r′ in p′ such that
t(p, r) is equivalent to t(p′, r′). Let r be a vertex in p and v a vertex of t(p, r).
A block tree pattern rooted at v of t(p, r), denoted by t(p, r)[v], is a block tree
pattern induced by v and all descendants of v.

We call a block tree pattern with no variable a block tree. For a block tree
pattern t and a block tree T , we say that t matches T if there exists a substitution
θ such that all graph patterns appearing in θ are block trees and tθ is equivalent
to T . We show the next lemmas for bpo-graph patterns and block tree patterns.
We omit the proofs.

Lemma 1. Let p and p′ be bpo-graph patterns in OP and r a vertex in p. Let
x := [p′, σ] be a binding for p. Then there exists a vertex r′ in σ such that
t(p, r){x := [t(p′, r′), σ]} is equivalent to t(p{x := [p′, σ]}, r).

Lemma 2. Let p and q be bpo-graph patterns in OP. Then, p is isomorphic to
q if and only if t(p) is equivalent to t(q).

In this section, we give a polynomial time algorithm for computing the following
problem.

Matching Problem for OP
Input: An outerplanar graph G ∈ O and a bpo-graph pattern p ∈ OP .
Problem: Decide whether or not p matches G.

246 Y. Sasaki et al.

From Lemmas 1 and 2, Matching Problem for OP can be reduced to deciding
a block tree pattern t(p) matches a block tree t(G). Hence, we can present a
polynomial time algorithm for solving Matching Problem for OP by modifying
the matching algorithm for tree patterns given in [6].

Let n be the number of vertices in p. Let r be a vertex in G and r′ a vertex
in p. For all vertices u in t(G, r), we compute a subset of V (t(p, r′)), which is
called a correspondence-set (C-set for short) of u and denoted by CS (u), in the
following way. We assume that each C-set is stored by a simple array of length
O(n). We compute C-sets of all vertices in t(G, r) in postorder depending on
a kind of each vertex. For a vertex u in t(G, r), let CSP(u) = {c′ ∈ CS (c) |
c is a child of u and c′ is a port of a variable in p}.

Leaf. For all leaves u of t(G, r), CS (u) is the set of all vertices u′ of t(p, r′) such
that dt(p,r′)(u′) = 1 and λp(u′) = λG(u).

Block vertex. Let u be a block vertex of t(G, r) corresponding to a block B
of G. Let c1, . . . , c� be the children of u which appear on the Hamiltonian
cycle of B in this order. Let CSB(u) be the set of all block vertices u′ in
t(p, r) satisfying the following conditions: u′ has just � children c′1, . . . , c

′
� such

that they appear on the Hamiltonian cycle of a block represented by u′ in
this order and either (μG(u, r) = μp(u′, r′) and c′i ∈ CS (ci)) or (μG(u, r) =
μ̄p(u′, r′) and c′i ∈ CS (c�−i+1)) holds for 1 ≤ i ≤ �. This work consumes
O(n�) time. Finally CS (u) = CSB(u) ∪ CSP(u).

Otherwise. Let u be a non-block vertex which is not a leaf in t(G, r) and
c1, . . . , c� the children of u. Let CSNB(u) be the set of all non-block vertices
u′ in t(p, r) satisfying the following condition: λG(u) = λp(u′), u′ has at
most � children c′1, . . . , c

′
�′ (�′ ≤ �) and there are �′ vertices ck1 , . . . , ck�′

among c1, . . . , c� such that c′i ∈ CS (cki) and δp({u′, c′i}) = δG({u, cki}) for
all i = 1, . . . , �′. We can decide whether or not this condition are satisfied for
u and u′ in the following way. First we construct a bipartite graph (U, V, E) as
follows: U = {CS (c1), . . . ,CS (c�)}, V = {c′1, . . . , c′�′} and E = {(CS(ci), c′j) |
c′j ∈ CS (ci) and δp({u′, c′j}) = δG({u, ci}) (1 ≤ i ≤ �, 1 ≤ j ≤ �′)}. Next
we compute a maximum bipartite graph matching problem for (U, V, E). If
u′ is a port of a variable and the bipartite graph has a matching of size �′,
or u′ is not a port of any variable and the bipartite graph has a matching
of size exactly �, we conclude that u and u′ satisfy the above condition. We
need O(��′

√
� + �′) time to find a maximum matching for the bipartite graph

(U, V, E) by Dinic’s algorithm. Then we need O(n�
√

�) time for all non-block
vertices in t(p, r). Finally CS (u) = CSNB(u) ∪ CSP(u).

The correctness of the above algorithm is shown from the following lemmas.

Lemma 3. Let G and p be an outerplanar graph in O and a bpo-graph pattern
in OP, respectively. Moreover let r and r′ be vertices of G and p, respectively,
and u and u′ vertices in t(G, r) and t(p, r′), respectively. Then,

(1) u′ ∈ CSB(u) or u′ ∈ CSNB(u)−CSP(u) if and only if t(p, r′)[u′] matches
t(G, r)[u], and

Mining of Frequent Block Preserving Outerplanar Graph 247

(2) u′ ∈ CSP(u) if and only if there is a descendant d of u such that t(p, r′)[u′]
matches t(G, r)[d].

Lemma 4. Let G and p be an outerplanar graph in O and a bpo-graph pattern
in OP, respectively. And let r′ be a vertex in p. Then there exists a vertex r in
G such that r′ ∈ CS (r) if and only if p matches G.

For each vertex r ∈ V (G), we need O(nN
√

d) time for computing all C-sets
for vertices in t(G, r), where N and n are the numbers of vertices in G and p,
respectively, and d is the maximum degree of cutpoints in p. Then we have the
following theorem.

Theorem 1. Matching Problem for OP is computable in polynomial time.

5 Pattern Enumeration Algorithm for Frequent BPO
Graph Pattern Problem

Let p and q be bpo-graph patterns in OP and σ a list of vertices of length
one or two in q. We easily show that for a variable h in p labeled with x, a
graph pattern p{x := [q, σ]} is also a bpo-graph pattern in OP . For p ∈ OP , let
L(p) = {pθ ∈ O | all graph patterns appearing in θ are in O}. It is easy to see
that if Λ and Δ have infinitely many symbols, for p and p′ ∈ OP , L(p) ⊆ L(p′)
if and only if there is a substitution θ such that all graph patterns appearing in
θ are in OP and p is isomorphic to p′θ.

Let D be a finite subset of O and p a bpo-graph pattern in OP . Then, we
denote by matchD(p) the number of outerplanar labeled graphs in D which are
matched by p. The frequency of p with respect to D, denoted by suppD(p), is
defined as suppD(p) = matchD(p)/|D|. Let t be a real number where 0 < t ≤ 1.
A bpo-graph pattern p ∈ OP is t-frequent with respect to D if suppD(p) ≥ t.
We call this real number t a frequency threshold.

In this section, we give an Apriori-like algorithm for computing the next
problem.

Frequent Block Preserving Outerplanar Graph Pattern Problem
Input: A set of outerplanar labeled graphs D ⊂ O and a frequency t (0 < t ≤ 1).
Output: The set of all t-frequent bpo-graph patterns in OP with respect to D.

For an integer k ≥ 0, a k-block tree pattern is defined to be a block tree pattern
such that the total sum of the numbers of block vertices, bridge variables, and
edges not adjacent to any block vertex is equal to k. Let D be a set of outerplanar
labeled graphs in O and t a real number where 0 < t ≤ 1. Let Lt

k be the set of
all t-frequent k-block tree patterns with respect to D and Ct

k a set of candidate
k-block tree patterns, which contains Lt

k. Let ΛD (resp. ΔD) be the set of all
vertex (resp. edge) labels appearing in D. We compute Ct

k and Lt
k (k ≥ 0) in

the following way.

248 Y. Sasaki et al.

0-block tree patterns. For all a ∈ ΛD, we make a new vertex v labeled with
a to construct a new block tree pattern pa = ({v}, ∅, {(v)}). Ct

0 is the set of
all block tree patterns pa obtained from all a ∈ ΛD in such a way. Let Lt

0 be
the set of all block tree patterns in Ct

0 which are t-frequent.
1-block tree patterns. Ct

1 is the set of all block tree patterns obtained from
Lt

0 in the following three ways 1-(a), 1-(b) and 2. Initially let Ct
1 = ∅.

1. For two 0-block tree patterns p = ({v}, ∅, {(v)}) and p′ = ({v′}, ∅, {(v′)})
in Lt

0, two copies q = ({w}, ∅, {(w)}) of p and q′ = ({w′}, ∅, {(w′)}) of p′

are made. Then,
(a) for all s ∈ ΔD, a new block tree pattern qs = ({w, w′}, {{w, w′}},

{(w), (w′)}) with an edge {w, w′} labeled with s is added to Ct
1, and

(b) a new block tree pattern qx = ({w, w′}, ∅, {(w), (w′), (w, w′)}) is
added to Ct

1.
2. For every block B appearing in all outerplanar labeled graphs in D, a

new block tree pattern qB = (V (t(B)), E(t(B)), {(w) | w is a non-block
vertex in V (t(B))}) is added to Ct

1.
Let Lt

1 be the set of all block tree patterns in Ct
1 which are t-frequent.

Let p be a block tree pattern. We say that p′ is a block tree subpattern of p if
p′ is a block tree pattern and V (p′) ⊆ V (p), E(p′) ⊆ E(p), and H(p′) ⊆ H(p).
Moreover we say that p′ is a terminal block tree subpattern if p′ is a block tree
subpattern of p and either of the following forms:

(1) p′ = ({u, v}, {{u, v}}, {(v)}) or p′ = ({u, v}, ∅, {(u, v), (v)}), where v is a
non-block vertex adjacent to only u in p.

(2) p′ = ({u, vB, v1, . . . , v�}, {{u, vB}, {v1, vB}, . . . , {v�, vB}}, {(v1), . . . , (v�)})
for some � ≥ 2, where vB is a block vertex adjacent to only u, v1, . . . , v� in p,
while all v1, . . . , v� are adjacent only to vB in p.

The vertex u appearing in (1) and (2) is called a connected point of p′. For a
block tree pattern p and a terminal block tree subpattern p′, we denote by p�p′

the block tree subpattern obtained from p by removing all vertices in p′ except
for the connected point of p′ and all edges and variables in p′.

k-block tree patterns (k ≥ 2). Initially let Ct
k = ∅. For two (k−1)-block tree

patterns p and q in Lt
k−1, let p′ and q′ be two terminal block tree subpatterns

of p and q, respectively. If p � p′ is equivalent to q � q′ then a new block
tree pattern r is constructed in such a way that a copy of p′ and a copy of
q′ are connected to a copy of p � p′ through the connected points of p′ and
q′, respectively. The block tree pattern r is added to Ct

k. Let Lt
k be the set

of all block tree patterns in Ct
k which are t-frequent.

We formally describe this algorithm in Fig. 3, and in Fig. 4, we give examples of
0-block tree patterns, 1-block tree patterns and k-block tree patterns constructed
in the above way. For any k ≥ 0, the size of Lt

k is defined as the total sum of
the numbers of vertices of block tree patterns in Lt

k.

Mining of Frequent Block Preserving Outerplanar Graph 249

Algorithm: FBTPGen;
Input: a set of block trees D and a frequency threshold t (0 < t ≤ 1);
Output: the set of all t-frequent block tree patterns of D;
begin
1: Construct Lt

0 and Lt
1 w.r.t. D;

2: k := 2;
3: while Lt

k−1 �= ∅ do begin
4: Ct

k = ∅; Lt
k = ∅;

5: foreach (p1, p2) ∈ Lt
k−1 × Lt

k−1 do begin
6: C′ := CandidateGen(p1, p2, C

t
k, Lt

k−1);
7: forall p ∈ C′ do
8: if p is t-frequent w.r.t. D then add p to Lt

k;
9: Ct

k := Ct
k ∪ C′

10: end;
11: k := k + 1
12: end;
13: return

�
k≥0 Lt

k

end.

Procedure CandidateGen(p1, p2, C, L);
Input: block tree patterns p1, p2 and sets of block tree patterns C, L;
begin
14: C′ := ∅;
15: forall p′

1 ∈ TB(p1) do
16: forall p′

2 ∈ TB(p2) do
17: if p1 � p′

1 is equivalent to p2 � p′
2 begin

18: Let u1 be the connected point of p′
1 to p1;

19: Let ψ be an isomorphism from p1 � p′
1 to p2 � p′

2;
20: U := {u ∈ V (p2 � p′

2) | u maps to ψ(u1) by an automorphism of p2 � p′
2};

21: forall u ∈ U do begin
22: Let p be a block tree pattern obtained from p′

1 and p2

by identifying u1 of p′
1 with u of p2;

23: if p � p′ ∈ L for all p′ ∈ TB(p) and p /∈ C ∪ C′ then add p to C′

24: end
25: end;
26: return C′

end;

Fig. 3. An algorithm for generating all frequent block tree patterns with respect to
a given set of block trees: We denote by TB(p) the set of all terminal block tree
subpatterns of a block tree pattern p

Lemma 5. Let p1 and p2 be two t-frequent (k − 1)-block tree patterns in Lt
k−1

for k ≥ 1. Procedure CandidateGen (Fig. 3) computes candidates of t-frequent
k-block tree patterns in polynomial time with respect to the numbers of vertices
of p1 and p2 and the size of Lt

k−1.

250 Y. Sasaki et al.

a

x

b

x

c

x a

x
2

s

b

x
1

a

x
3

b

x
1

x
2

#

#
#

a

c

b

x
1

x
2

x
3

b

x
2

a

x
1

a

x
1

b

x
2

(k-2)-block tree pattern

Two (k-1)-block tree patterns k-block tree pattern

1-block tree patterns

0-block tree

patterns

The degree of

a block vertex

is more than 2.

(k-2)-block tree pattern (k-2)-block tree pattern

Isomorphic

Fig. 4. Examples of 0-block tree patterns and 1-block tree patterns, and a generation
of a k-block tree pattern from two (k − 1)-block tree patterns

Proof. Let N be the size of Lt
k−1 and nmax the maximum number of vertices of

block tree patterns in Lt
k−1. Let n be the maximum of the numbers of vertices

of p1 and p2. The double forall-loop at lines 15 and 16 iterates O(n2) times. We
can decide in O(n log n) time whether or not the two block tree patterns p1 � p′1
and p2 � p′2 are equivalent. The set of vertices U at line 20 can be computed
in O(n) time. Since Ct

k contains at most n3
maxN

2 block tree patterns, by using
a binary search, we can computes the if-statement at line 23 in O(n2 log N +
n log nmax) time. Since the forall-loop at line 21 iterates O(n) times, it needs
O(n2(n log N + log nmax)) time totally. Then the time complexity of Procedure
CandidateGen is O(n4(n log N + log nmax)). �

Lemma 6. For any k ≥ 2, Lt
k is correctly computed from Lt

k−1 in polynomial
time with respect to the size of Lt

k−1 by the above algorithm.

Proof. The foreach-loop at line 5 of Algorithm FBTPGen computes Lt
k from

Lt
k−1. From Theorem 1 and Lemma 5, the time complexity of the loop is poly-

nomial time with respect to the size of Lt
k−1. �

Finally we have the following theorem.

Theorem 2. Algorithm FBTPGen correctly computes Frequent Block Preserv-
ing Outerplanar Graph Pattern Problem.

Mining of Frequent Block Preserving Outerplanar Graph 251

t = 0.5 t = 0.3 t = 0.1
Ct

k Lt
k time(sec) Ct

k Lt
k time(sec) Ct

k Lt
k time(sec)

0 10 4 0.03 10 4 0.03 10 5 0.03
1 53 10 0.1 53 15 0.1 63 24 0.1
2 32 23 1 72 39 1 150 99 1
3 159 96 8 254 146 8 544 296 9
4 338 280 13 663 555 18 1368 1041 20

k 5 797 713 42 1959 1798 72 4819 4128 93
6 1414 1332 102 5246 4996 276 16338 15010 524
7 1773 1696 211 12803 12390 1256 51464 49379 4384
8 1414 1367 309 26556 26330 7431 150050 147461 46995
9 615 606 222 46826 46677 49593 – – –

10 107 107 57 – – – – – –
11 0 0 3 – – – – – –

Fig. 5. Experimental results of Algorithm FBTPGen for generating all t-frequent k-
block tree patterns (on Windows XP Professional SP2, JDK 1.5, Pentium D 2.80GHz,
2.00GB RAM)

6 Experimental Result

We have implemented Algorithm FBTPGen (Fig. 3) and tested on a chemical
dataset. In our experiments, we used a dataset consisting of 100 outerplanar
molecular graphs from the NCI database [4]. The results are given in Fig. 5.
We set frequency thresholds to be 0.5, 0.3 and 0.1, and tested on the dataset
with respect to the frequencies. The table shows the numbers of candidate and
frequent k-block tree patterns, and the runtime in seconds for the generation
of Lt

k from Lt
k−1. In the table, we only show experimental results obtained by

experiments which finished in 50,000 seconds (about 14 hours). The algorithm
effectively reduced the amount of candidates for frequent block tree patterns.
For example, for the frequency threshold t = 0.5, about 92.9% of block tree
patterns in

⋃
k Ct

k are also contained in
⋃

k Lt
k.

In Fig. 6, we give the tables of the number of frequent block tree patterns with
respect to the number of bridge variables. For any frequency threshold, the num-
ber of frequent block tree patterns with no bridge variable is relatively smaller
than the total number of frequent block tree patterns. Our method succeeds in
generating many frequent block tree patterns in which some block patterns are
connected one another with bridge variables. Then the approach turns out to be
useful to find out new frequent patterns in datasets of outerplanar graphs.

The generated patterns certainly contain useless or unimportant patterns from
theoretical point of view, because if a frequent block tree pattern has a labeled
edge, a block tree pattern which is obtained from the frequent block tree pattern
by replacing the labeled edge with a bridge variable is also frequent. In order
to generate more refined frequent block tree patterns and bpo-graph patterns,
we are developing mining methods such as maximal frequent or closed frequent
pattern mining.

252 Y. Sasaki et al.

The number of bridge variables (t = 0.5)
0 1 2 3 4 5 6 7 8 9 10 11 Total

0 4 4
1 3 7 10
2 5 11 7 23
3 11 35 37 13 96
4 14 71 112 67 16 280

k 5 14 101 241 236 105 16 713
6 5 79 291 453 355 133 16 1332
7 0 31 178 448 548 365 116 10 1696
8 0 5 48 189 389 417 251 66 2 1367
9 0 0 4 25 88 172 183 108 26 0 606

10 0 0 0 0 2 13 31 35 21 5 0 107
11 0 0 0 0 0 0 0 0 0 0 0 0 0

The number of bridge variables (t = 0.3)
0 1 2 3 4 5 6 7 8 9 Total

0 4 4
1 6 9 15
2 5 20 14 39
3 15 55 58 18 146

k 4 26 143 220 137 29 555
5 34 285 621 567 246 45 1798
6 26 422 1309 1703 1118 365 53 4996
7 11 522 2192 3859 3519 1780 459 48 12390
8 2 537 2971 6676 7977 5509 2192 435 31 26330
9 0 466 3182 8953 13395 11895 6446 2031 297 12 46677

The number of bridge variables (t = 0.1)
0 1 2 3 4 5 6 7 8 Total

0 5 5
1 12 12 24
2 22 50 27 99
3 41 114 106 35 296

k 4 61 295 405 229 51 1041
5 122 687 1394 1281 548 96 4128
6 208 1451 3758 4873 3360 1181 179 15010
7 295 2718 8717 14336 13498 7352 2177 286 49379
8 426 4540 17727 35498 41824 30395 13398 3297 356 147461

Fig. 6. The numbers of t-frequent k-block tree patterns with r bridge variables for
r ≥ 0

7 Conclusion and Future Works

In this paper, we have considered a data mining problem of extracting structural
features from semi-structured data whose data can be expressed by outerplanar
graphs. Firstly, we have defined a block preserving outerplanar graph pattern

Mining of Frequent Block Preserving Outerplanar Graph 253

as a new graph pattern having an outerplanar graph structure and structured
variables. Secondly, we have presented an incremental polynomial time Apriori-
like algorithm for enumerating all frequent bpo-graph patterns with respect to
a given finite set of outerplanar graphs. Finally, by reporting experimental re-
sults on a subset of the NCI dataset, we have evaluated the performance of
our algorithm. Currently we are developing learning algorithms for the class of
bpo-graph patterns in the framework of computational learning theory.

In [3], we introduced unordered term trees, which are unordered tree patterns
with internal structured variables, and showed that a matching problem for the
class of unordered term trees with variables of more than 3 ports is NP-complete.
From this, we easily observe that the matching problem for the class of bpo-graph
patterns with variables of more than 3 ports is also NP-complete. It is an open
problem whether or not there is a polynomial time matching algorithm for the
class of bpo-graph patterns with variables of at most 3 ports.

References

1. Horváth, T., Ramon, J., Wrobel, S.: Frequent Subgraph Mining in Outerplanar
Graphs. In: Proc. KDD 2006, pp. 197–206 (2006)

2. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoretical Computer Science 63, 295–302 (1989)

3. Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Polynomial time
matching algorithms for tree-like structured patterns in knowledge discovery. In:
Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 5–16. Springer,
Heidelberg (2000)

4. National Cancer Institute - Chemical Dataset, http://cactus.nci.nih.gov/
5. Shamir, R., Tsur, D.: Faster subtree isomorphism. Journal of Algorithms 33(2),

267–280 (1999)
6. Suzuki, Y., Inomae, K., Shoudai, T., Miyahara, T., Uchida, T.: A polynomial

time matching algorithm of structured ordered tree patterns for data mining from
semistructured data. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI),
vol. 2583, Springer, Heidelberg (2003)

7. Suzuki, Y., Shoudai, T., Uchida, T., Miyahara, T.: Ordered term tree languages
which are polynomial time inductively inferable from positive data. Theoretical
Computer Science 350, 63–90 (2006)

8. Takami, R., Suzuki, Y., Uchida, T., Shoudai, T., Nakamura, Y.: Polynomial time
inductive inference of TTSP graph languages from positive data. In: Kramer, S.,
Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 366–383. Springer,
Heidelberg (2005)

9. Uchida, T., Shoudai, T., Miyano, S.: Parallel algorithm for refutation tree problem
on formal graph systems. IEICE Transactions on Information and Systems E78-
D(2), 99–112 (1995)

10. Yamasaki, H., Shoudai, T.: A polynomial time algorithm for finding linear interval
graph patterns. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS,
vol. 4484, pp. 67–78. Springer, Heidelberg (2007)

http://cactus.nci.nih.gov/

Relational Macros for Transfer

in Reinforcement Learning

Lisa Torrey1, Jude Shavlik1,
Trevor Walker1, and Richard Maclin2

1 University of Wisconsin, Madison WI 53706, USA
2 University of Minnesota, Duluth, MN 55812, USA

Abstract. We describe an application of inductive logic programming
to transfer learning. Transfer learning is the use of knowledge learned in
a source task to improve learning in a related target task. The tasks we
work with are in reinforcement-learning domains. Our approach trans-
fers relational macros, which are finite-state machines in which the tran-
sition conditions and the node actions are represented by first-order
logical clauses. We use inductive logic programming to learn a macro
that characterizes successful behavior in the source task, and then use
the macro for decision-making in the early learning stages of the target
task. Through experiments in the RoboCup simulated soccer domain, we
show that Relational Macro Transfer via Demonstration (RMT-D) from
a source task can provide a substantial head start in the target task.

1 Introduction

Knowledge transfer is an inherent aspect of human learning. When we learn to
perform a task, we rarely start from scratch; instead we recall relevant knowledge
from previous learning experiences and apply it. Transferring knowledge this way
helps us to master new tasks more quickly.1

Machine learning techniques are often designed to address isolated learning
tasks. However, many machine learning domains contain multiple related tasks.
Transfer learning approaches take advantage of these relationships, using knowl-
edge learned in a source task to speed up learning in a related target task. Algo-
rithms that allow successful transfer represent progress towards making machine
learning as effective as human learning.

One area in which transfer is often desirable is reinforcement learning (RL),
since standard RL algorithms can require long training times. The RL domain
that we use in this work is the simulated soccer project RoboCup [9]. In Section 2
we give an overview of RL and the RoboCup domain.

Several algorithms for transfer in domains like RoboCup have been proposed,
some of which we discuss in Section 3. In our own recent work [20], we introduce
an approach that transfers skills using inductive logic programming (ILP), where
a skill is a type of action that the RL agent uses. In this paper, we extend that
approach by transferring strategies, which are action plans that may require

1 Appears in the 17th Conference on Inductive Logic Programming, 2007.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 254–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relational Macros for Transfer in Reinforcement Learning 255

isClose(Opponent)
hold :-

true

pass(Teammate) :-

isOpen(Teammate)
not isClose(Opponent)

Fig. 1. A possible strategy for the RoboCup game KeepAway [13], in which the RL
agent in possession of the soccer ball must execute a series of hold or pass actions to
prevent its opponents from getting the ball. The rules inside nodes show how to choose
actions. The labels on arcs show the conditions for taking transitions. Each node has
an implied self-transition that applies by default if no exiting arc applies.

composing several skills. We continue to use ILP to learn strategies, and we
represent them with a structure that we call a relational macro.

A relational macro is a finite-state machine (FSM) that uses first-order logic
for decision-making. An FSM is a behavior model consisting of a set of nodes
and transitions. To use a macro, an RL agent takes transitions to move between
nodes representing internal states, and it chooses actions to take in each node.
Its choices are determined by first-order logical clauses. Figure 1 shows a simple
example of a relational macro and Section 4 provides more details on how a
macro is executed.

We use inductive logic programming (ILP) to learn macros because domains
like RoboCup are inherently relational. To our knowledge, fully relational RL
approaches have not yet been successfully applied in domains as complex as
RoboCup. However, as we showed with skill transfer, relational information can
be successfully transferred between RoboCup tasks. Therefore we continue to
use ILP in this approach, describing source-task behavior and relational macros
in first-order logic.

Relational-macro transfer begins by examining existing source-task episodes
and analyzing them to learn a successful strategy in the form of a macro. Sec-
tion 5 describes our algorithm for this learning stage. There are several possible
ways to use the macro to improve learning in the target task; we use it to demon-
strate the successful strategy, as described in Section 6. After a short demonstra-
tion period that gives the target-task learner a head start, we continue learning
the task with standard RL. We call this approach Relational Macro Transfer via
Demonstration (RMT-D).

2 Reinforcement Learning in RoboCup

In reinforcement learning [16], an agent navigates through an environment trying
to earn rewards or avoid penalties. The environment’s state is described by a set
of features, and the agent takes actions to cause the state to change. In one com-
mon form of RL called Q-learning [22], the agent learns a Q-function to estimate
the value of taking an action from a state. An agent’s policy is typically to take
the action with the highest Q-value in the current state, except for occasional
exploratory actions. After taking the action and receiving some reward (possibly
zero), the agent updates its Q-value estimates for the current state.

256 L. Torrey et al.

Fig. 2. Snapshot of a 3-on-2 BreakAway game. The attacking players have possession
of the ball and are maneuvering against the defending team towards the goal.

Stone and Sutton [13] introduced RoboCup as an RL domain that is chal-
lenging because of its large, continuous state space and non-deterministic action
effects. The RoboCup project [9] has the overall goal of producing robotic soccer
teams that compete on the human level, but it also has a software simulator for
research purposes. Since the full game of soccer is quite complex, researchers have
developed several simpler games within the RoboCup simulator. See Figure 2
for a snapshot of one of these games.

In M -on-N BreakAway [21], the objective of the M reinforcement learners
called attackers is to score a goal against N−1 hand-coded defenders and a goalie.
The game ends when they succeed, when an opponent takes the ball, when the
ball goes out of bounds, or after a time limit of 10 seconds. The learners receive
a +1 reward if they score a goal and 0 reward otherwise. The attacker who has
the ball may choose to move (ahead, away, left, or right with respect to the goal
center), pass to a teammate, or shoot (at the left, right, or center part of the
goal).

RoboCup tasks are inherently multi-agent games, but a standard simplifica-
tion is to have only one learning agent. This agent controls the attacker currently
in possession of the ball, switching its “consciousness” between attackers as the
ball is passed. Attackers without the ball follow simple hand-coded policies that
position them to receive passes.

Table 1 shows the state features for BreakAway, which mainly consist of dis-
tances and angles between players and the goal. They are represented in logical
notation, though our RL algorithm uses the grounded versions of these predi-
cates in a fixed-length feature vector. Capitalized atoms indicate typed variables,
while constants and predicates are uncapitalized. The attackers (labeled a0, a1,
etc.) are ordered by their distance to the agent in possession of the ball (a0), as
are the non-goalie defenders (d0, d1, etc.).

Our RL implementation uses a SARSA(λ) variant of Q-learning [15] and
employs a support vector machine for function approximation [7]. We relearn
the Q-function using the SVM after every batch of 25 games. The exploration
rate begins at 2.5% and decays exponentially over time. Stone and Sutton [13]
found that discretizing the continuous features into Boolean interval features

Relational Macros for Transfer in Reinforcement Learning 257

Table 1. The features that describe a BreakAway state

distBetween(a0, Player) distBetween(Attacker, goalCenter)
distBetween(Attacker, ClosestDefender) distBetween(a0, GoalPart)
angleDefinedBy(Attacker, a0, ClosestDefender) timeLeft
angleDefinedBy(topRight, goalCenter, a0) distBetween(Attacker, goalie)
angleDefinedBy(GoalPart, a0, goalie) angleDefinedBy(Attacker, a0, goalie)

called tiles is useful for learning in RoboCup; following this approach we create
32 tiles per feature.

Agents in the games of 2-on-1, 3-on-2, and 4-on-3 BreakAway take approxi-
mately 3000 training episodes to reach a performance asymptote in our system.
These three games are similar, but their differences in the numbers of attack-
ers and defenders cause substantial differences in their optimal policies. The
largest difference is between 2-on-1 and the others, since there are no non-goalie
defenders in 2-on-1 BreakAway. Despite the differences, the tasks do have the
same objective and can be expected to require similar strategies, which makes
relational macros an attractive technique for transferring between them.

3 Related Work in Transfer Learning

The goal in transfer learning is to speed up learning in a target task by transfer-
ring knowledge from a related source task. One straightforward way to do this in
reinforcement learning is to begin performing the target task using the learned
source-task models. Taylor et al. [19] use this type of transfer method, which we
refer to as model reuse.

Another approach that has been proposed is to follow source-task policies
during the exploration steps of normal RL in the target task, instead of doing
random exploration. This approach is referred to as policy reuse and is performed
by Fernandez and Veloso [5].

Our previous work includes a method called skill transfer [20]. In skill transfer,
we learn rules with ILP that indicate when the agent chooses to take a single
source-task action. There are multiple ways that these skills could be used in the
target task; we use an advice-taking approach in this previous work. Our advice
places soft constraints on the target-task solution that can be followed or ignored
according to how successful they are. Taylor and Stone [18] also learn a set of
rules for taking actions, and they propose different advice-taking mechanisms:
for example, they give a Q-value bonus to the advised action.

There are also approaches for transferring multi-step action sequences, such
as those of Perkins and Precup [10] and Soni and Singh [11]. Known as options,
these sequences have their own internal Q-functions that are followed until they
reach a termination state. The target-task learner treats options as alternative
actions. Croonenborghs et al. [1] learn relational options for use in relational

258 L. Torrey et al.

reinforcement learning (RRL). Options are often used in hierarchical RL [2] as
well as in transfer learning.

Relational reinforcement learning [17] itself is a related topic. In RRL, state
descriptions and learned models use first-order logic, which clearly provides op-
portunities for transferring concepts in first-order logic. Driessens et al. [4] and
Stracuzzi and Asgharbeygi [14] point out some of these opportunities.

We propose to perform transfer by learning relational macros and using them
to demonstrate successful behavior in the target task. Our approach is related
to several of the methods described above. It could be viewed as a type of
model reuse or policy reuse that creates an abstract version of the source-task
model instead of reusing it directly. Like skill transfer it uses ILP, but it involves
multi-step strategies instead of single actions. It shares the idea of transferring
sub-policies with option transfer, but an option traditionally represents a single
policy while a macro contains a separate sub-policy at each node.

4 Executing a Relational Macro

We have defined a relational macro as a finite-state machine [6]. An FSM models
the behavior of a system in the form of a directed graph. The nodes of the graph
represent states of the system, and in our case they represent internal states of
the agent in which different policies apply.

The policy of a node can be to take a single action, such as move(ahead) or
shoot(goalLeft), or to choose from a class of actions, such as pass(Teammate). In
the latter case a node has first-order logical clauses to decide which grounded
action to choose. An FSM begins in a start node and has conditions for tran-
sitioning between nodes. In a relational macro, these conditions are also sets of
first-order logical clauses.

We refer again to the example macro in Figure 1. When executing this macro,
a KeepAway agent begins in the initial node on the left. The only action it can
choose in this node is hold. It remains there, taking the default self-transition,
until the condition isClose(Opponent) becomes true for some opponent player.
Then it transitions to the second node, where it evaluates the pass(Teammate)
rule to choose an action. If the rule is true for just one teammate player, it passes
to that teammate; if several teammates qualify, it randomly chooses between
them; if no teammate qualifies, it abandons the macro and reverts to using the
Q-function to choose actions. The receiving teammate then becomes the learning
agent, and it remains in the pass node if an opponent is close or transitions back
to the hold node otherwise.

Figure 1 is a simplification in one respect: each transition and node in a macro
has an entire set of rules, rather than just one rule. This allows us to represent
disjunctive conditions. When more than one grounded action or transition is
possible (when multiple rules match), the agent obeys the rule that has the
highest score. The score of a rule is the estimated probability that following it
will lead to a successful game. We estimate these probability scores from source-
task data.

Relational Macros for Transfer in Reinforcement Learning 259

5 Learning a Relational Macro

We learn a macro by analyzing source-task data. We assume that this data is
available because we have previously learned the source task and stored the
games generated during the learning process. The method by which the source
task was learned is not particularly important, since the data we use only consists
of states, actions, and rewards. However, it is important that the data include
source-task games from early in the learning curve as well as later, so that there
are examples of games that do not attempt to use the final learned strategy. In
our system we include all 3000 games from the source-task learning curve.

Given this data, we use inductive logic programming (ILP) to characterize suc-
cessful behavior in the source task. Specifically, we use a locally modified version
of Aleph [12]. The Aleph algorithm selects an example, builds the most specific
clause that entails the example within the provided language restrictions, and
searches for a more general clause that maximizes a provided scoring function.

The precision of a rule is the fraction of examples it calls positive that are
truly positive, and the recall is the fraction of truly positive examples that it
correctly calls positive. The scoring function we use is

F (1) =
2 ∗ Precision ∗ Recall

Precision + Recall

because we consider both precision and recall to be important. We use both the
heuristic and randomized search algorithms provided by Aleph.

Recall that a macro consists of a set of nodes along with rulesets for transitions
and action choices. The simplest algorithm for learning a macro might be to
provide Aleph with language restrictions that allow it to learn both the structure
and the rulesets simultaneously. However, this would be a very large search space.
To make the search more feasible, we separate it into two phases: first we learn
the structure, and then we learn each ruleset independently. Each phase therefore
has its own language restrictions, which we detail in the following sections. The
overall algorithm is summarized in Table 2.

Note that one final step might be necessary if the actions and features in the
source and target tasks are not identically named: a mapping from source-task
names to target-task names, as in Torrey et al. [20,21]. Our approach does not
even require the tasks to be completely isomorphic, because we can set the Aleph
language restrictions so that only source-task elements that have corresponding
target-task elements appear in the macro.

5.1 Structure Learning

The first phase in our RMT-D algorithm for learning a macro is the structure-
learning phase. The objective is to find a sequence of actions that distinguishes
successful games from unsuccessful games. The sequence does not need to sepa-
rate the games perfectly, and indeed we should not expect it to, because it does
not yet have any conditions on states. The structure only needs to provide a
good starting point for the second phase.

260 L. Torrey et al.

Table 2. Our RMT-D algorithm for learning a relational macro from a source task

Phase 1: Structure learning
Collect games from source task
Let Pos = high-reward games
Let Neg = low-reward games
Learn a macro sequence that distinguishes Pos from Neg

Phase 2: Ruleset learning
Collect games Ggood that contain the macro sequence and are high-reward
Collect games Gbad that are low-reward
For each node N in the macro sequence

For each action A represented by node N
Let Pos = Ggood states from node N that took action A
Let Neg = Ggood states from node N that took action B �= A

∪ Gbad states that ended with action A
Learn a ruleset that distinguishes Pos from Neg

For each transition T in the macro
Let Pos = Ggood states that took transition T
Let Neg = Ggood states that could have taken transition T and did not

∪ Gbad states that ended with transition T
Learn a ruleset that distinguishes Pos from Neg

The language restrictions for Aleph in this phase are as follows. Let the pred-
icate actionTaken(G, S1, A, P, S2) denote that action A with argument P was
taken in game G at step S1 and repeated until step S2. Aleph must construct
a clause macroSequence(G) with a body that contains a combination of these
predicates. The first predicate may introduce two new variables, S1 and S2, but
the rest must use an existing variable for S1 while introducing another new vari-
able S2. In this way Aleph finds a connected sequence of actions that translates
directly to a linear node structure.

We provide Aleph with sets of positive and negative examples, where positives
are games with high overall reward and negatives are those with low overall
reward. For BreakAway, this is a straightforward separation of scoring and non-
scoring games. For tasks with more continuous rewards, we could set thresholds
or upper and lower percentiles on the overall reward acquired during a game.

We store all the clauses that Aleph encounters during its search that separate
the positive and negative examples with at least 50% accuracy. After the heuristic
and randomized searches finish, we take the sequence with the highest F(1) score
as the macro structure.

For instance, suppose that the scoring BreakAway games consistently look
like these examples:

Game 1: move(ahead), pass(a1), shoot(goalRight)
Game 2: move(ahead), move(ahead), pass(a2), shoot(goalLeft)

Relational Macros for Transfer in Reinforcement Learning 261

move(ahead) pass(Teammate) shoot(GoalPart)

Fig. 3. The structure that corresponds to the example macro clause in Section 5.1

Assuming that the non-scoring games have different patterns than the examples
above do, Aleph might learn the following clause to characterize a scoring game:

macroSequence(Game) :-
actionTaken(Game, StateA, move, ahead, StateB),
actionTaken(Game, StateB, pass, Teammate, StateC),
actionTaken(Game, StateC, shoot, GoalPart, gameEnd).

The macro structure corresponding to this sequence is shown in Figure 3.
The policy in the first node will be to take a single action, move(ahead). In the
second node the policy will be to consider multiple pass actions, and in the third
node the policy will be to consider multiple shoot actions. The conditions for
choosing an action, and for taking transitions between nodes, are learned in the
next phase.

5.2 Ruleset Learning

The second phase in our RMT-D algorithm for learning a macro is the ruleset-
learning phase. The objective is to describe when transitions and actions should
be taken based on the RL state features. We learn a ruleset for each transition
and each action independently, so that we perform several smaller, in-depth
seaches rather than one large search. Because of this, variables in these rules are
local to a node rather than global to the entire macro.

The language restrictions for Aleph in this phase are as follows. There is one
predicate for each state feature of the RL task (for BreakAway, these are in Ta-
ble 1). To describe the conditions on state S under which a transition should be
taken, Aleph must construct a clause transition(S) with a body that contains a
combination of these predicates. To describe the conditions under which an action
should be taken, Aleph must construct a clause action(S, Action, ActionArg).

Aleph may learn some action rules in which the action argument is grounded,
such as action(S, move, ahead), as well as rules in which the action argument
remains a variable, such as action(S, pass, Teammate). In the case of the move
action in BreakAway the action argument in a rule is always grounded, since the
original state features do not include useful references to move directions. We
could have defined additional predicates that did, but we chose to use only the
original features. Note that it is still possible to have a state move(Direction) for
taking multiple move actions, but the rules for choosing a grounded move action
will use only grounded arguments.

We provide Aleph with sets of positive and negative examples, consisting of
states in source-task games that took the transition or action. Consider the macro
structure in Figure 3; we will describe the action datasets for the pass node and

262 L. Torrey et al.

pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

move(ahead) pass(a2) shoot(goalLeft)

move(right) pass(a1)

Game 1 (scored goal)

Game 3 (did not score)

Game 2 (scored goal)

move(ahead) pass(a1) shoot(goalRight)

Game 4 (did not score)

positive

positive

negative

move(ahead)

Fig. 4. Training examples (states circled) for pass(Teammate) rules in the second node
of the pictured macro. The pass states in Games 1 and 2 are positive examples. The
pass state in Game 3 is a negative example; this game did not follow the macro, but
the pass action led directly to a negative game outcome. The pass state in Game 4 is
not an unambiguous example because a later action may have been responsible for the
bad outcome.

the transition datasets for the transition from the move node to the pass node.
Let Ggood represent the set of high-reward source-task games that contain the
macro sequence and let Gbad represent the set of low-reward source-task games.

In the action datasets for the pass node, the positive examples are states in
Ggood games that fall into that node. The negative examples are states in Gbad

games in which the last step of the unsuccessful game was the node action, pass.
This indicates that the pass action led directly to a negative game outcome.
Figure 4 illustrates some hypothetical action-choice examples.

In the transition datasets for the transition from the move node to the pass node,
the positive examples are states in Ggood games that match the pass node and for
which the previous state matched the move node. A negative example is a state in
a Ggood game that does not match the pass node even though the previous state
matched themovenode. Other negative examples are states inGbad games in which
the last step of the unsuccessful game was a transition from the move node to the
pass node. Figure 5 illustrates some hypothetical transition examples.

As in the first phase, we store all the clauses that Aleph encounters during
the search that classify the training data with at least 50% accuracy. However,
instead of selecting a single best clause as we did in the previous phase, we collect
from these a ruleset for each transition and each action. We wish to have one
strategy (i.e. one finite-state machine), but there may be multiple reasons for
making internal choices.

Our procedure for greedily selecting which clauses are included in a ruleset
is summarized in Table 3. We sort the rules by decreasing precision and walk
through the list, adding rules to the final ruleset if they increase the set’s recall
and do not decrease its F(1) score.

We assign each rule a score that may be used to decide which rule to obey
if multiple rules match while executing the macro. The score is an estimate

Relational Macros for Transfer in Reinforcement Learning 263

pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

move(ahead) shoot(goalLeft)

Game 1 (scores)

Game 2 (scores)

move(ahead) pass(a1) shoot(goalRight)

Game 3 (does not score)

move(ahead)

positive

negative

Fig. 5. Training examples (states circled) for the transition from move to pass in the
pictured macro. The pass state in Game 1 is a positive example. The shoot state in
Game 2 is a negative example; the game began by following the macro but did not take
the transition from move to pass. The pass state in Game 3 is not an unambiguous
example because a later step may have been responsible for the bad outcome.

of the probability that following the rule will lead to a successful game. We
determine this estimate by collecting training-set games that followed the rule
and calculating the fraction of these that ended successfully.

6 Transferring a Relational Macro

A relational macro describes a strategy that was successful in the source task.
There are several ways we could use this information to improve learning in a
related target task. One possibility is to treat it as advice [20], as we did in skill
transfer, putting soft constraints on the Q-learner that influence its solution. The
benefit of this approach is its robustness to error: if the source-task knowledge is
less appropriate to the target task than the user expected, the target-task agent
can learn to disregard the soft constraints, avoiding negative transfer effects.

On the other hand, the advice-taking approach is conservative and can be some-
what slow to reach its full effect, even when the source-task knowledge is highly
appropriate to the target task. Since a macro is a full strategy rather than isolated
skills, wemight achieve good target-task performancemore quickly by demonstrat-
ing the strategy in the target task and using it as a starting point for learning. This
is a more aggressive approach, carrying more risk for negative transfer if the source
and target tasks are not similar enough. Still, if the user believes that the tasks are
similar enough, the potential benefits could outweigh that risk.

There are intermediate approaches with more moderate benefits and risks,
such as using the macro as an option. Here we take full advantage of the potential
benefits, and also provide a contrasting method to skill transfer, by presenting
the more aggressive demonstration method.

Our target-task learner therefore begins by simply executing the macro strat-
egy for a set of episodes, instead of exploring randomly as an untrained RL agent
would traditionally do. In this demonstration period, we generate examples of
Q-values: each time the macro chooses an action because a high-scoring rule

264 L. Torrey et al.

Table 3. The RMT-D procedure for selecting the final ruleset for one transition or
action. Rules are added to the final set if they cover previously uncovered positive ex-
amples and do not decrease the overall score. The scoring function is the F(1) measure.

Let R = all rules encountered with > 50% accuracy
S = R sorted by decreasing precision on the training set
T = ∅
For each rule r ∈ S

U = T ∪ {r}
If recall(U) > recall(T) and score(U) ≥ score(T)
Then T = U

Return FinalRuleset = T

matched, we use the rule score to estimate the Q-value of the action. Recall
the the rule score is the estimated probability that following the rule leads to
a successful game. Since BreakAway has Q-values ranging from zero to one, we
simply set the estimate equal to the rule score (if this were not the case, we could
multiply the probability by an appropriate scaling factor to fit a larger Q-value
range). We also use rule scores to produce Q-value estimates for other actions
for which rules fired. Finally, we infer that actions for which no rules fired had
very low Q-values, which in the BreakAway domain we estimate as zero.

Note that the examples with low estimated Q-values are necessary to ensure
that the initial Q-function is not overly optimistic in unexplored areas. Driessens
and Dzeroski also encountered this problem in their work on guidance in RRL;
they addressed it by interleaving imitation with exploration [3].

For each step of the demonstration we therefore have a Q-value estimate for
each action, and via support vector regression we use these to learn an initial Q-
function for the target task. The demonstration period lasts for 100 games in our
system, and as usual after each batch of 25 games we relearn the Q-function. After
100 games, we continue learning the target task with standard RL. This gener-
ates new Q-value examples in the standard way, and we combine these with the
old macro-generated examples as we continue relearning the Q-function after each
batch. As the new examples accumulate, we gradually drop the old examples by
randomly removing them at the rate that new ones are being added.

Since standard RL has to act mostly randomly in the early steps of a task, a
good macro strategy can provide a large immediate advantage. The performance
level of the demonstrated strategy is unlikely to be as high as the target-task
agent can achieve with further training, unless the tasks are similar enough to
make transfer a trivial problem, but the hope is that the learner can smoothly
improve its performance from the level of the demonstration up to its asymptote.
If there is limited time and the target task cannot be trained to its asymptote,
then the immediate advantage that macros can provide may be even more valu-
able in comparison to methods like skill transfer.

Relational Macros for Transfer in Reinforcement Learning 265

7 Experimental Results

We present results from transfer experiments with RMT-D in the RoboCup do-
main. To test our approach, we learn a macro from data acquired while training
2-on-1 BreakAway and transfer it to both 3-on-2 and 4-on-3 BreakAway. We
learn the source task with standard RL for 3000 games, and then we train the
target tasks for 3000 games to show both the initial advantage of the macros
and the behavior as training continues.

The macros that RMT-D learned from the five source runs all had similar
structures. The most common version is shown in Figure 6. In one of the runs
the initial pass node was not included, and the ordering of shoot(goalRight)
and shoot(goalLeft) varied, as would be expected in the symmetrical BreakAway
domain. The presence of two shoot nodes may seem counterintuitive, but it
appears that the RL agent uses the first shot as a feint to lure the goalie in one
direction, counting on a teammate to intercept the shot before it reaches the
goal. When it does, the learning agent switches to the teammate in possession of
the ball and performs the second shot, which is actually intended to score. This
tendency of RL agents to use actions in unintended ways is an indication of the
difficulties that can arise when learning relational concepts from RL data.

Figures 7 and 8 show our results in 3-on-2 and 4-on-3 BreakAway respectively.
We compare our approach against Q-learning as well as two related transfer
methods: model reuse [19] and skill transfer [20]. Each curve in the figure is
an average of 25 runs and has points smoothed over the previous 500 games
to smooth over the high variance in the RoboCup domain. For the transfer
algorithms, there are five target-task runs generated from each of five source-
task runs, to allow for variance in both stages of learning.

Our agents in 2-on-1 BreakAway reach a performance asymptote of scoring in
approximately 70% of the episodes. The macros learned from the 2-on-1 source
runs, when executed in 2-on-1 BreakAway, score in approximately 50% of the
episodes. (A random policy scores in less than 1% of the episodes.) The macros
therefore appear to capture the majority of the successful behavior of the source
task, though they do not describe it completely. Capturing source-task behavior
more completely, while avoiding overfitting, is one topic for future work.

All of the transfer algorithms speed up learning in comparison to Q-learning,
but the benefits they provide are different. Model reuse and relational macros
both provide an advantage in the early performance of the target-task learner.
RMT-D produces a larger advantage in these scenarios than model reuse does,

move(Direction)pass(Teammate) shoot(goalRight) shoot(goalLeft)

Fig. 6. One of the five macro structures learned from 2-on-1 BreakAway runs. There
are between 10 and 20 rules associated with each transition and action, so those are
not shown.

266 L. Torrey et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL
Model Reuse
Skill Transfer

RMT-D

Fig. 7. Probability of scoring a goal in 3-on-2 BreakAway, with Q-learning and with
three transfer approaches that use 2-on-1 BreakAway as the source task

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL
Model Reuse
Skill Transfer

RMT-D

Fig. 8. Probability of scoring a goal in 4-on-3 BreakAway, with Q-learning and with
three transfer approaches that use 2-on-1 BreakAway as the source task

and it scales better as the distance between the source and target grows. Skill
transfer provides no initial benefit, but then develops a steady advantage over
Q-learning. During the middle section of the learning curve it performs slightly
better than RMT-D before they all converge at the asymptote.

In pointwise t-test comparisons at the 99% confidence level, the RMT-D curve
is significantly above the model-reuse curve for the first 1100 episodes in Figure 7
and 1425 episodes in Figure 8. The RMT-D curve is significantly above the skill-
transfer curve for the first 575 episodes in Figure 7 and 875 episodes in Figure 8.
The skill-transfer curve is significantly above the RMT-D curve at just one point
in Figure 7 (at 1825 episodes) and never in Figure 8, and the model-reuse curve
is never significantly above the RMT-D curve in either figure.

We also tried an algorithm that combines skill transfer via advice with RMT-D.
The combination is straightforward: we begin by demonstrating the macro as in

Relational Macros for Transfer in Reinforcement Learning 267

RMT-D, and we incorporate advice when learning the Q-function as in skill trans-
fer. This produces a learning curve (not shown) that is not significantly different
from the RMT-D curve. The substantial early effects of transferring a macro via
demonstration apparently overwhelm the effects of skill-transfer advice.

8 Conclusions and Future Work

Knowledge transfer in reinforcement learning is an interesting and challenging
problem, and inductive logic programming is a powerful tool to apply to it. The
use of ILP allows us to transfer the kind of information that humans might
transfer: strategies with decisions in first-order logic. We describe an approach
for transferring relational macros from a source task that gives the target-task
learner a significant head start. Our approach produces consistently higher initial
performance than standard RL and several related transfer methods.

In future work, we plan to investigate alternative macro designs that may
capture the source-task behavior more completely. While a single linear action
sequence appears to explain the majority of our agents’ success in the source
task, other configurations might perform better. We are interested in trying a
statistical relational learning (SRL) approach to estimate probabilities and to
make decisions from rulesets.

Our RMT-D algorithm is most effective when the user is confident that the
source-task strategy is a reasonable approximation of a good target-task strat-
egy. However, relational macros might be applicable in more distant transfer
scenarios, such as when only part of a source-task strategy is useful in a tar-
get task. We plan to investigate alternative ways to apply relational macros in
the target task to make this possible. Potential frameworks for this include op-
tions [1] and advice-taking [8]. We are also interested in incorporating human
advice into relational structures.

Another direction for future work is the refinement of relational macros during
target-task learning. The parameters or structure of a macro could be updated
based on early experience in the target task. This is a problem of theory refine-
ment, which is an area of interest for transfer learning.

Acknowledgements

This research is supported by DARPA IPTO grants HR0011-04-1-0007 and
FA8650-06-C-7606.

References

1. Croonenborghs, T., Driessens, K., Bruynooghe, M.: Learning relational skills for
inductive transfer in relational reinforcement learning. In: International Conference
on Inductive Logic Programming (2007)

2. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

268 L. Torrey et al.

3. Driessens, K., Dzeroski, S.: Integrating guidance into relational reinforcement learn-
ing. Machine Learning 57(3), 271–304 (2004)

4. Driessens, K., Ramon, J., Croonenborghs, T.: Transfer learning for reinforcement
learning through goal and policy parametrization. In: ICML Workshop on Struc-
tural Knowledge Transfer for Machine Learning (2006)

5. Fernandez, F., Veloso, M.: Policy reuse for transfer learning across tasks with differ-
ent state and action spaces. In: ICML Workshop on Structural Knowledge Transfer
for Machine Learning (2006)

6. Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill, New
York (1962)

7. Maclin, R., Shavlik, J., Torrey, L., Walker, T.: Knowledge-based support vector
regression for reinforcement learning. In: IJCAI Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games (2005)

8. Maclin, R., Shavlik, J., Torrey, L., Walker, T., Wild, E.: Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel regression.
In: AAAI Conference on Artificial Intelligence (2005)

9. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence 12, 233–250 (1998)

10. Perkins, T., Precup, D.: Using options for knowledge transfer in reinforcement
learning. Technical Report UM-CS-1999-034 (1999)

11. Soni, V., Singh, S.: Using homomorphisms to transfer options across continuous
reinforcement learning domains. In: AAAI Conference on Artificial Intelligence
(2006)

12. Srinivasan, A.: The Aleph manual (2001)
13. Stone, P., Sutton, R.: Scaling reinforcement learning toward RoboCup soccer. In:

International Conference on Machine Learning (2001)
14. Stracuzzi, D., Asgharbeygi, N.: Transfer of knowledge structures with relational

temporal difference learning. In: ICML Workshop on Structural Knowledge Trans-
fer for Machine Learning (2006)

15. Sutton, R.: Learning to predict by the methods of temporal differences. Machine
Learning 3, 9–44 (1988)

16. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

17. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An
overview. In: ICML Workshop on Relational Reinforcement Learning (2004)

18. Taylor, M., Stone, P.: Cross-domain transfer for reinforcement learning. In: Inter-
national Conference on Machine Learning (2007)

19. Taylor, M., Stone, P., Liu, Y.: Value functions for RL-based behavior transfer: A
comparative study. In: AAAI Conference on Artificial Intelligence (2005)

20. Torrey, L., Shavlik, J., Walker, T., Maclin, R.: Skill acquisition via transfer learning
and advice taking. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML
2006. LNCS (LNAI), vol. 4212, Springer, Heidelberg (2006)

21. Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In: Gama, J., Camacho, R.,
Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720,
Springer, Heidelberg (2005)

22. Watkins, C.: Learning from delayed rewards. PhD thesis, University of Cambridge
(1989)

Seeing the Forest Through the Trees

Learning a Comprehensible Model from a First Order
Ensemble

Anneleen Van Assche and Hendrik Blockeel

Computer Science Department, Katholieke Universiteit Leuven, Belgium
{anneleen.vanassche,hendrik.blockeel}@cs.kuleuven.be

Abstract. Ensemble methods are popular learning methods that are
usually able to increase the predictive accuracy of a classifier. On the
other hand, this comes at the cost of interpretability, and insight in the
decision process of an ensemble is hard to obtain. This is a major reason
why ensemble methods have not been extensively used in the setting of
inductive logic programming. In this paper we aim to overcome this issue
of comprehensibility by learning a single first order interpretable model
that approximates the first order ensemble. The new model is obtained
by exploiting the class distributions predicted by the ensemble. These are
employed to compute heuristics for deciding which tests are to be used
in the new model. As such we obtain a model that is able to give insight
in the decision process of the ensemble, while being more accurate than
the single model directly learned on the data.

Keywords: ensembles, first order decision trees, comprehensibility.

1 Introduction

In the process of knowledge discovery, one seeks to extract useful knowledge from
data bases. But for knowledge to be useful, predictive accuracy is not sufficient:
the extracted patterns also need to be understood by human users in order to
trust them and accept them. Moreover users often construct models to gain
insight in the problem domain rather than to obtain an accurate classifier only.
For this reason, researchers have advocated for machine learning methods, such
as decision tree learners and rule learners which yield comprehensible models.
In the context of inductive logic programming, comprehensibility is usually even
more important than in propositional learning because in the problem domains
tackled by ILP algorithms (such as life science, medical domains etc.) end-user
acceptance often depends on the learners ability to explain the reasoning behind
its decisions.

For quite some years now, a lot of interest has been shown to a class of learning
methods called ensembles. The main goal in the design of ensemble methods is to
increase the predictive accuracy of the classifier and studies indeed have shown
the discrimination power of ensemble methods both theoretically and empirically
[1,5,8], and in propositional as well as relational learning [13,11,7,19]. Ensemble

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 269–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 A. Van Assche and H. Blockeel

methods are learning algorithms that first construct a set of classification models
and then classify new data points by combining the predictions of each of these
models. Exactly by doing so, they are often able to increase the stability and
predictive accuracy significantly over the single models. On the other hand the
comprehensibility of the learned hypothesis drops significantly, since the result
of an ensemble method is a large set of models with (weighted) votes connected
to each of them, which obviously becomes very hard to interpret. This is one of
the major reasons why ensemble methods are still less popular in ILP than in
propositional learning.

Some authors have pointed out that striving for comprehensibility is one of
the important issues in ensemble learning requiring future investigations [1,16].
Quite some successful research has been carried out already in this area. More
in particular researchers have tried to obtain comprehensibility by means of ex-
tracting a new interpretable model from an existing ensemble without sacrificing
too much accuracy. Craven and Shavlik [6] presented an algorithm Trepan for
extracting comprehensible, symbolic representations from trained neural net-
works. Trepan extracts a decision tree using the network as an oracle to answer
queries during the extraction process. Domingos [9] proposed Combined Multi-
ple Models (CMM). CMM first builds an ensemble of multiple models and then
reapplies the base learner to recover the partitioning implicit in the multiple
model ensemble. This is achieved by giving the base learner a new training set,
composed of a large number of examples generated and classified according to
the ensemble. Zhou et al. [21] utilize neural network ensembles to generate new
instances and then extract symbolic rules from those instances. Ferri et al. [10]
describe a method to learn a comprehensible model from an ensemble by select-
ing the single hypothesis from a multi-tree that is most similar to the combined
hypothesis according to a similarity measure. In the context of relation learning,
Van Assche et al. [18] proposed a method similar to Domingos’ to learn a new
interpretable model from artificially generated relational data based on a first
order ensemble.

The approaches described above all rely on artificially generated data to tackle
the problem of finding an interpretable model that approximates the ensemble:
either by classifying this new data by the ensemble and constructing a new in-
terpretable model on it, or by using this new data to measure similarity between
the ensemble model and candidate interpretable models. As was described in
Van Assche et al. [18] generating relational artificial data is not straightforward
(as opposed to propositional data), because data distributions are far more com-
plex and examples do not longer have a fixed set of attributes. In Van Assche
et al. [18] new ‘partial’ examples are constructed by adding more and more con-
straints (that occur as tests in a tree of the ensemble) to the example. Before
a constraint is added, satisfiability needs to be checked with respect to already
added constraints. Therefore, one needs to make use of the inherent equivalence
relation between a defined concept and its definition. The algorithm relies on the
users ability to adequately define this background knowledge in both directions

Seeing the Forest Through the Trees 271

of the equivalence relation. But in Prolog, this becomes almost unfeasible when
introducing aggregate or other complex functions.

For this reason, in this paper we aim to learn a single interpretable model
from a first order ensemble without the need of generating artificial data nor
requiring extra input from the user. Instead of first generating artificial data
and computing class distributions for different possible tests on this data, class
distributions are estimated directly from the information available from the dif-
ferent models in the ensemble in order to decide which tests are to be used in
the new model. We describe the proposed approach in detail in the next section.
Afterwards it is evaluated on some relational data sets comparing the accuracy
and model size to the original single tree and the ensemble classifier. In the last
section we formulate conclusions and some ideas for future research.

2 Proposed Method

In this section we propose a method to learn a single first order decision tree
from a first order decision tree ensemble1.

2.1 Computing Heuristics from the Ensemble

Assume E is an ensemble of N first order decision trees, which we would like to
represent by one single first order decision tree. Actually a decision tree is able
to represent any function described over the instance space as it can separate
the instance space completely if necessary, so there also exist a decision tree
that exactly represents the function described by the ensemble (but it cannot
necessarily be learned from the training data). The decision boundaries of an
ensemble of decision trees correspond to the union of decision boundaries of the
decision trees it consists of and the label of each bounded area in the ensemble’s
decision space is a combination of the labels of the corresponding overlapping
areas of each of the decision trees. As such, for a tree to represent this ensemble
it suffices to use the tests that correspond to the decision boundaries in the
decision space of the ensemble, meaning that it needs only tests that appear in
the trees of the ensemble to represent the ensemble.

To construct a first order decision tree from an ensemble we will closely follow
the procedure of regular first order tree induction according to Tilde [3] as
shown in Table 1, though now certain subroutines will compute information from
the ensemble instead of from the data (subroutines that will change are shown
in boxes).

In Tilde, first order decision trees are learned with a divide and conquer
algorithm similar to C4.5 [15]. The OPTIMAL SPLIT procedure returns a query Qb,
which is selected from a set of candidates generated by the refinement operator
ρ, by using a heuristic, such as information gain or gain ratio for classification
problems, or variance reduction for regression.
1 Though the more general framework does not only apply to first order ensembles,

in [20] we evaluate it in a propositional context.

272 A. Van Assche and H. Blockeel

Table 1. Tilde algorithm for first order logical decision tree induction [3]

procedure GROW TREE (E: examples, Q: query):

candidates := ρ(← Q)

← Qb := OPTIMAL SPLIT(candidates,E)

if STOP CRIT (←Qb, E)

then

K := PREDICT(E)

return leaf(K)
else

conj := Qb − Q
E1 := {e ∈ E|←Qb succeeds in e ∧ B}
E2 := {e ∈ E|←Qb fails in e ∧ B}
left := GROW TREE (E1, Qb)
right := GROW TREE (E2, Q)
return node(conj, left, right)

We will tackle the points where our algorithm differs from the normal top-
down induction procedure in the next sections.

2.2 Generation of Candidate Test Queries

In the normal first order decision tree induction algorithm described in Table 1,
candidate tests are generated by extending the current query Q (the conjunction
of all succeeding tests from the root to the leaf that is to be extended) with a
number of new literals that are specified in the language bias, using a refine-
ment operator ρ which operates under θ-subsumption. A given node n in a first
order tree may introduce variables that can be reused in the nodes of its left
subtree, which contains the examples for which the conjunction in n succeeds
(with certain bindings for these variables).

In order to represent the hypothesis of the ensemble by a single tree, on the
other hand, it is sufficient to use the tests that were used in the ensemble, as
pointed out in the previous section. In a first order decision tree, the tests in the
internal nodes of the tree are (conjunctions of) first order literals, which might
be bound to literals occurring higher in the tree. So to select the potential tests
to construct the new tree, for each node in a tree of the forest, the conjunc-
tion of succeeding first order literals occurring from the root until that node is
considered. Then this conjunction is split into separate tests by taking literals
together that share variables. As such we get a fixed set of tests which can be
used to put in the internal nodes of the new tree. This is in contrast with usual
ILP hypothesis construction where the search space grows as new literals (that
may introduce new variables) are added to the hypothesis. By using this candi-
date selection step which provides a fixed set of first order tests, we can efficiently

Seeing the Forest Through the Trees 273

construct a new tree from the ensemble. As tests can consist of more than one
literal at a time (it might be a chain of literals which share variables and that
occurred on a path of a tree in the first order ensemble) actually some kind of
lookahead is now allowed in the tree as conjunctions of literals might be added
at once in a node. Moreover, this allows to represent the same concept in a more
compact way than is the case when each node can only contain one literal at
a time.

2.3 Computing the Optimal Split

In order to construct a tree that models the ensemble, in each node of the tree
the optimal split needs to be chosen based on the ensemble instead of the data.
Assume the ensemble E gives labels LE(x) to new examples x according to a
combination of the predictions of each of its N base trees DTk, as follows:

LE(x) = argmaxCi(
1
N

N∑
k

PDTk
(Ci|x)) (1)

So it predicts the class Ci with the highest average predicted probability over the
different N trees. Now we need to adapt the OPTIMAL SPLIT procedure such that
the heuristic used (assume information gain but gain ratio or other heuristics
could be used as well) can be computed from the distributions in the ensemble.

Suppose Q is the conjunction of tests that occurred along the path from the
root until node n, then the regular formula of information gain IG for a certain
test t in n is

IG(t|Q) = entropy(Q) −P (t|Q)entropy(t, Q)
−P (¬t|Q)entropy(¬t, Q) (2)

where

entropy(A) =
c∑

i=1

−P (Ci|A) log2 P (Ci|A) (3)

with c the total number of classes and Ci the ith class and A any set of conditions.
While the usual top-down induction algorithm will estimate the class proba-

bilities (P (Ci|A)) from the training data, we will now estimate them from the
ensemble. A decision tree is constructed to model class distributions in the data
and thus can be used to estimate these P (Ci|A). Suppose we have a decision tree
DTk in the ensemble E, we can now estimate this PDTk

(Ci|A) by propagating it
through the tree DTk, applying the law of total probability in each node, until
we end up in the leaves. Then we get:

PDTk
(Ci|A) =

∑
leaves lkj in DTk

PDTk
(Ci|Conjlkj

, A)PDTk
(Conjlkj

|A) (4)

274 A. Van Assche and H. Blockeel

where Conjlkj
is the conjunction of tests from the root of tree DTk until

leaf lkj . The class probability estimate PE(Ci|A) of the ensemble E is then the
average over the class probability estimates PDTk

(Ci|A) of the N trees in E.
In the equation 4 there is one term for each leaf in the tree. Now the probability

PDTk
(Ci|Conjlkj

, A) corresponds to the probability estimate PDTk
(Ci|Conjlkj

)
given by leaf lkj (by using the example frequencies in that leaf) because decision
tree DTk assumes that, as no tests were found to split the leaf lkj further,
the class Ci is conditionally independent from the tests in A given the tests in
Conjlkj

.
For the other probability PDTk

(Conjlkj
|A), we can distinguish 3 possible

cases: (assume B is the background knowledge defined for the problem domain)

– A ∧ B |= Conjlkj
: then PDTk

(Conjlkj
|A) = 1 and PDTk

(Ci|A) =
PDTk

(Ci|Conjlkj
) (this means all examples succeeding A succeed Conjlkj

and would end up in leaf lkj)
– A ∧ B |= ¬Conjlkj

: PDTk
(Conjlkj

|A) = 0 and leaf lkj of tree DTk will not
contribute in the probability PDTk

(Ci|A) (this means all examples succeeding
A will fail Conjlkj

and will not end up in leaf lkj)
– A ∧ B �|= Conjlkj

, A ∧ B �|= ¬Conjlkj
: 0 < PDTk

(Conjlkj
|A) < 1 and leaf lkj

of tree DTk partly contributes to the probability PDTk
(Ci|A) (this means

part of the examples succeeding A might succeed Conjlkj
and end up in leaf

lkj (with probability Pk(Conjlkj
|A)) and a part might not succeed Conjlkj

and end up in one of the other leaves)

To be able to estimate these probabilities PDTk
(Conjlkj

|A), we could either
make the assumption that the tests in Conjlkj

are conditionally independent
from those in A (that are not given by Conjlkj

), or compute them on a data set.
The assumption in the first option is exactly the same as made by Quinlan [14],
when classifying instances with missing values by a tree. This option then boils
down to PDTk

(Conjlkj
|A) = PDTk

(Conjlkj
|{te : (A ∧ B |= te) ∧ (Conjlkj

∧ B |=
te ∨Conjlkj

∧B |= ¬te)}) assuming independence with tests te that do not fulfill
(A ∧ B |= te) ∧ (Conjlkj

∧ B |= te ∨ Conjlkj
∧ B |= ¬te). This means that to

find PDTk
(Ci|A) from equation 4 satisfiability needs to be checked between A

and Conjlkj
for each of the leaves lkj . As this is quite expensive to compute so

many times, we gave preference to the other method estimating the probabilities
from the available data2. We proceeded as follows: to find the probability that
examples satisfying a certain test end up in a certain leaf lkj , we check the
proportion of examples, covered3 by the tests Conjlkj

, that is also covered by
the test A. In the implementation, this is done by keeping track of precomputed
coverlists for all leaves and candidate tests. These coverlists store for all available
examples whether the examples are covered by the corresponding test or not.
Deciding which tests end up in which leaves is then simply a matter of taking

2 This data is either the training data or both training and unlabeled test data.
3 An example is covered by a test if the test succeeds for that example.

Seeing the Forest Through the Trees 275

the intersection of their coverlists, and as such this avoids expensive satisfiability
testing between queries.

2.4 Stop Criteria

Using the method described above to compute the information gain for tests
according to an ensemble E, a decision tree is built approximating the ensemble
E, each time replacing a leave n, with Conjn the conjunction of tests occurring
on the path from the root to leaf n, in the tree by an internal node as long
as we can find a test t where IGE(t|Conjn) ≥ IGE(ti|Conjn) for all possible
tests ti and IGE(T |Conjn) > 0. As conditional probabilities between tests are
computed from the available data, the information gain of all tests will be zero
if only one example of the available data ends up in the current node and no
further splitting will be performed.

Nevertheless, at the end of the tree construction, some redundant splits will
still be present in the tree, as they might change the class distributions in the
leaves but not the eventual classes predicted by the leaves. To avoid this, tree
construction will be stopped when all examples that end up in the current node
are labeled the same by the ensemble.

2.5 Prediction of a Leaf in the New Tree

When no good tests are found to split the current node, or when a stop criterion
is met, the node is turned into a leaf. The label predicted by such a leaf n with
a conjunction of tests Conjn from the root to that leaf, is the label predicted by
the ensemble according to the tests Conjn, so:

Ln = argmaxCi(
1
N

N∑
k

PDTk
(Ci|Conjn)) (5)

where the probabilities PDTk
of the N trees of the ensemble are computed ac-

cording to equation 4.

3 Empirical Evaluation

The method described above was implemented in the ACE-hipP system [4] (and
named Rism, Relational Interpretable Single Model). The ACE-hipP system
contains a first order decision tree learner Tilde [3], and some ensemble methods
such as bagging and first order random forests [19] which use Tilde as the base
learner.

We performed experiments on a Trains data set [12] generated with the Ran-
dom Train Generator from Muggleton4 according to a concept specified in Van
Assche et al. [19], on the Carcinogenesis data set [17] and on the Financial data
4 The train generator is available at

http://www-users-csyork.ac.uk/∼stephen/progol.html.

276 A. Van Assche and H. Blockeel

Table 2. Accuracy (in percentage) and model size on three data sets for Bagging
and Forf(0.25) with 3-11-33-50 trees, the Rism model that was learned from these
ensembles and Tilde

Accuracy Model size

3 11 33 50 3 11 33 50

Trains data

Bagging 67.5 70.7 71.5 71.5 136.9 511.8 1529.2 2319.1
Rism(Bagging) 67.0 68.0 68.0 68.6 47.7 47.3 45.4 42.5
Rism u(Bagging) 68.3 70.1 70.4 70.4 77.8 85.5 82.2 81.1

Forf(0.25) 67.3 70.8 71.8 72.1 128.8 471.4 1416.4 2151.5
Rism(Forf(0.25)) 65.5 68.8 70.4 70.1 48.8 42.5 39.8 39.6
Rism u(Forf(0.25)) 65.4 70.5 70.7 70.8 84.3 76.8 71.4 69.4

Tilde 68.9 40.6

Carcinogenesis data

Bagging 59.3 62.2 62.0 62.5 106.7 390.1 1176.6 1790.6
Rism(Bagging) 58.5 59.7 61.3 61.1 52 47.8 49 49.1
Rism u(Bagging) 60.3 61.9 63.1 63.2 80.1 79.3 80.5 67.1

Forf(0.25) 60.4 61.9 62.0 62.6 104.3 380.2 1138 1711.6
Rism(Forf(0.25)) 59.7 61.4 60.9 62.1 50.7 47.3 46.7 44.6
Rism u(Forf(0.25)) 60.1 62.1 62.3 63.1 80.6 77.8 73.8 58.6

Tilde 61.1 29.9

Financial data

Bagging 84.3 86.7 86.6 86.2 35.9 131 397.1 600.3
Rism(Bagging) 83.2 84.7 84 83.3 14.5 12 10.4 10.6
Rism u(Bagging) 84.4 86.5 86.3 86.1 26.3 24.4 21.3 20.5

Forf(0.25) 84.6 86.5 86.5 86.3 41.1 151.8 449.5 688.8
Rism(Forf(0.25)) 84.6 85 85.1 84.4 12.3 10.4 9.3 7.3
Rism u(Forf(0.25)) 85.1 86.1 86.1 86.5 23.8 20.6 18.9 17.7

Tilde 84.5 10.5

set [2]. We constructed a bagged ensemble with 3, 11, 33 and 50 trees, as well as
a random forest where 25% of the features were used at each node (Forf(0.25)).
From these ensembles an interpretable single model was constructed applying
the method described above (either using only the training set (Rism) or us-
ing both the training and unlabeled test set (Rism u) to compute probability
estimates). For comparison, we also built a single (pruned) tree directly on the
training data. As the heuristic implemented for Rism is information gain, also
information gain was used to build the trees in the ensembles and the single
tree directly on the data. All experiments were done averaging over 10 different
5-fold cross-validations.

In table 2 we report test accuracy (in percentage) and model size (in terms of
number of nodes in the trees) for the different settings. We provide results for
different ensemble sizes to show the evolution in accuracy of the ensembles and
Rism when more trees are added to the ensemble. For comparison between the

Seeing the Forest Through the Trees 277

different algorithms on the other hand, we focus on the results for ensembles of
33 (or 50) trees, because by then, accuracy should somehow be leveled out.

As can be seen from the table, the accuracy results of Rism(u) increase when
more trees are added as is also the case for the ensemble methods Bagging and
Forf. More surprisingly, while the model size of the ensembles obviously in-
creases when more trees are added, the model size of Rism(u) almost always
decreases. So when adding more trees, both the accuracy of the obtained single
model increases and the size decreases. This is because the probability estimates
derived from the ensemble to compute heuristics for the single tree improve when
the ensemble comprises more trees. When only the training set is used to compute
probability estimates from the ensembles we find that overall Rism(Forf(0.25))
slightly outperforms Rism(Bagging) while Forf(0.25) does not necessarily out-
perform Bagging. Also the models obtained by Rism(Forf(0.25)) are slightly
smaller than those of Rism(Bagging). This seems to indicate that the increase
in diversity among the trees of Forf over Bagging improves the probability es-
timates. While Rism(Forf(0.25)) is only able to improve slightly over Tilde

(and not even always), when unlabeled test instances are also used to estimate
probabilities from the ensembles, Rism u obtains accuracies comparable to the
ensembles it is deduced from. Sizes of models constructed by Rism u are more
or less double the size of those of Rism because more examples are sorted down
the trees as unlabeled test instances are now used as well. This means that on
average in each branch one extra node is added.

4 Conclusions and Future Work

In this paper we presented a method to learn a first order decision tree that
approximates the decisions made by an ensemble of first order decision trees.
The tree is obtained without the need of generating artificial data nor requiring
extra input from the user. Instead, first a fixed set of possible candidate tests
for the nodes in the new tree are extracted from the ensemble. Next, heuristics
are computed for each of the candidate tests by predicting class distributions for
these tests using the ensemble. Labels in the eventual leaves of the new tree are
the labels predicted by the ensemble. As such, we aim to obtain an interpretable
tree that is able to give insight in the predictions of the ensemble, while being
more accurate than a single tree directly learned on the data. Experiments show
that when only training data is used to compute conditional probabilities from
the ensemble, improvements over building a single tree directly on the data are
minimal. On the other hand, when unlabeled test instances are used as well, the
single model deduced from the ensemble obtains accuracies comparable to the
ensemble’s, while on average only having one extra node per branch compared
to a tree directly built on the data.

As currently no postpruning is performed on the obtained trees, it would
still be interesting to see what the effect is on the accuracy of applying further
postpruning and/or stop criteria. Furthermore, we would also like to investigate
the influence on the stability of the trees.

278 A. Van Assche and H. Blockeel

Acknowledgements

Anneleen Van Assche is supported by the Institute for the Promotion of In-
novation by Science and Technology in Flanders (I.W.T.-Vlaanderen). Hendrik
Blockeel is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium) (F.W.O.-Vlaanderen).

References

1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning 36, 105 (1999)

2. Berka, P.: Guide to the financial data set. In: Siebes, A., Berka, P. (eds.) The
ECML/PKDD 2000 Discovery Challenge (2000)

3. Blockeel, H., De Raedt, L.: Top-down induction of first order logical decision trees.
Artificial Intelligence 101(1-2), 285–297 (1998)

4. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.:
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

5. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
6. Craven, M.W.: Extracting Comprehensible Models from Trained Neural Networks.

PhD thesis, University of Wisconsin, Madison (2003)
7. de Castro Dutra, I., Page, D., Costa, V., Shavlik, J.: An empirical evalutation of

bagging in inductive logic programming. In: Matwin, S., Sammut, C. (eds.) ILP
2002. LNCS (LNAI), vol. 2583, pp. 48–65. Springer, Heidelberg (2003)

8. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

9. Domingos, P.: Knowledge discovery via multiple models. Intelligent Data Analy-
sis 2, 187–202 (1998)

10. Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: From Ensemble Methods
to Comprehensible Models. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002.
LNCS, vol. 2534, pp. 165–177. Springer, Heidelberg (2002)

11. Hoche, S., Wrobel, S.: Relational learning using constrained confidence-rated boost-
ing. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp.
51–64. Springer, Heidelberg (2001)

12. Michalski, R.: Pattern Recognition as Rule-Guided Inductive Inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2, 349–361 (1980)

13. Quinlan, J.: Boosting first-order learning. In: Arikawa, S., Sharma, A.K. (eds.)
ALT 1996. LNCS, vol. 1160, Springer, Heidelberg (1996)

14. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
15. Quinlan, J.R.: C4.5: Programs for Machine Learning. In: Machine Learning. Mor-

gan Kaufmann series, Morgan Kaufmann, San Francisco (1993)
16. Ridgeway, G., Madigan, D., Richardson, J., adn O’Kane, T.: Interpretable boosted

naive bayes classification. In: Proc. of the 4th International Conference on Knowl-
edge Discovery in Databases, pp. 101–104. AAAI Press, Menlo Park (1998)

17. Srinivasan, A., King, R., Muggleton, S., Sternberg, M.: Carcinogenesis predictions
using ILP. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS (LNAI), vol. 1297,
pp. 273–287. Springer, Heidelberg (1997)

18. Van Assche, A., Ramon, J., Blockeel, H.: Learning interpretable models from an
ensemble in ILP. In: Proc. of the 16th International Conference on Inductive Logic
Programming – short papers, pp. 210–212 (2006)

Seeing the Forest Through the Trees 279

19. Van Assche, A., Vens, C., Blockeel, H., Džeroski, S.: First order random forests:
Learning relational classifiers with complex aggregates. Machine Learning 64(1-3),
149–182 (2006)

20. Van Assche, A., Blockeel, H.: Seeing the forest through the trees: Learning an
interpretable model from an ensemble. In: Kok, J.N., Koronacki, J., Lopez de
Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS
(LNAI), vol. 4701, Springer, Heidelberg (2007)

21. Zhou, Z., Jiang, Y., Chen, S.: Extracting symbolic rules from trained neural net-
work ensembles. AI Communications 16(1), 3–15 (2003)

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 280 – 291, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Building Relational World Models
for Reinforcement Learning

Trevor Walker1, Lisa Torrey1, Jude Shavlik1, and Richard Maclin2

1 University of Wisconsin, Madison WI 53706, USA
2 University of Minnesota, Duluth, MN 55812, USA

Abstract. Many reinforcement learning domains are highly relational. While
traditional temporal-difference methods can be applied to these domains, they
are limited in their capacity to exploit the relational nature of the domain. Our
algorithm, AMBIL, constructs relational world models in the form of relational
Markov decision processes (MDPs). AMBIL works backwards from collections
of high-reward states, utilizing inductive logic programming to learn their pre-
image, logical definitions of the region of state space that leads to the high-
reward states via some action. These learned preimages are chained together to
form an MDP that abstractly represents the domain. AMBIL estimates the re-
ward and transition probabilities of this MDP from past experience. Since our
MDPs are small, AMBIL uses value-iteration to quickly estimate the Q-values
of each action in the induced states and determine a policy. AMBIL is able to
employ complex background knowledge and supports relational representa-
tions. Empirical evaluation on both synthetic domains and a sub-task of the
RoboCup soccer domain shows significant performance gains compared to
standard Q-learning.

1 Introduction

We present a relational reinforcement learning (RL) method, AMBIL (Abstract
Model Building via ILP), that can handle complex relational reinforcement learning
domains with real-valued, high-dimensional feature spaces and sparse reward struc-
tures. Via its novel method for partitioning an environment into useful states,
AMBIL attempts to find good policies by building a model of a domain’s state-
transition structure in the form of an abstract Markov decision process (MDP).
AMBIL uses inductive logic programming (ILP) extensively to learn the states in this
MDP, treating each state as a separate ILP learning problem. The use of ILP tech-
niques provides power and generality to our models that would otherwise be unattain-
able with other approaches.

Traditional RL methods, such as model-free, temporal-difference (TD) learning al-
gorithms [15], find optimal or near-optimal policies to maximize the reward received
while acting within the domain. However, as the domain becomes more complex,
these methods often rely upon function approximation for effective generalization of
training data.

In complex domains, generalization by function approximators can pose significant
difficulties and typically requires a large number of examples. AMBIL attempts to

 Building Relational World Models for Reinforcement Learning 281

improve generalization by focusing on the state transitions seen in the training data.
AMBIL uses ILP to partition the state space and, since these partitions are based di-
rectly upon the state transitions of actions, can generalize the examples more effec-
tively. AMBIL also exploits the relational aspects of RL domains; similar domain
actions can be abstracted and learned together rather than one at a time. AMBIL ab-
stracts objects in the domain, learning rules that apply to whole classes of objects.

The partitions learned by AMBIL form a relational MDP, with the transition and
reward function estimated from previously observed data. Existing techniques, such
as value-iteration [15], provide estimates of the expected reward for each MDP state.
AMBIL’s MDP both determines the policy and provides an explicit, easy-to-analyze
representation of the domain.

AMBIL is not the first method to address relational RL. Several techniques exist
that apply relational function approximation to traditional Q-learning or dispense with
function approximation altogether. We compare AMBIL to these methods in the re-
lated-work section.

We present empirical results in a synthetic domain and in the challenging Breakaway
subtask of the RoboCup soccer domain [8], demonstrating faster learning and higher
asymptotes at convergence than traditional Q-learning reinforcement learning algorithms.

2 Background

In reinforcement learning [15], an agent performs actions in some domain. After each
action, the agent receives feedback in the form of numeric rewards. The agent attempts to
learn a policy π that maps domain states to actions to maximize the sum of rewards
received.

A reinforcement learning domain can be thought of as a Markov Decision Process
(MDP). An MDP is a five-tuple ‹S,A,P,R,γ› where S is a finite set of states; A is a
finite set of actions; P is a transition function denoting the next-state distribution after
taking action a in state s; R is a bounded reward function denoting the expected im-
mediate reward received for taking action a in state s; and γ∈[0,1) is a discount factor.

p, q
1.0

p, ~r
0.81

P=1r=0

P=0.5r=0
P=1
r=0

P=1.0

r=0

P=1

r=
1

P=1.0
r=0

P=0.5
r=0

P=1.0

r=0

P=0.5r=0
P=0.5

r=0

r, q
0.729

p, r
0.9

Fig. 1. Sample MDP produced by AMBIL. First-order logical rules define each state. Arcs
represent action transitions for two actions (one action with solid and one with dotted lines).
Arcs show the probability of transitions, given the action, and immediate rewards. Value-
iteration, with γ=0.9, calculates the Q-value of each state-action pair (not shown). The maxi-
mum Q-value from each state (shown inside each state) determines the policy for the state.

282 T. Walker et al.

In many cases, the underlying MDP for a domain is unknown. In these situations,
the agent must interact with the domain in order to learn a policy. Either the agent
can learn a policy directly, without learning the underlying MDP, or the agent can
attempt to learn the underlying structure in some form and then create a policy based
upon the learned structure. The former approach is called model-free or direct rein-
forcement learning and the latter is called model-learning.

Q-learning [16], a common model-free approach used in RL when the underlying
MDP is not known, makes few assumptions or restrictions concerning the RL domain
and performs competitively with many model-learning approaches. It works by learn-
ing a function Q(s,a) that represents the expected reward for taking action a in state s.
Q-learning determines policy by choosing the action with the highest Q-value for a
given state. The Q-function itself is often modeled using a function approximator,
allowing Q-learning some ability to scale to complex domains with real-valued, high-
dimensional feature spaces.

3 Building World Models

AMBIL, a model-building technique, partitions the state space and creates an MDP
from the partitions. First-order logical rules define the portion of state space each

E(r) = 0

E(r) = 1
P = 0.66

P = 0.33

E(r) = 0

E(r) = 1
P = 0.66

P = 0.33

r = 1
r = 1

r = 0

r = 0

r = 0

r = 0

r = 0

r = 0

H1=0

H2=1

H3=0

E(r) = 0

E(r) = 1
P = 0.66

P = 0.33
S1=0.66

E(r) = 0

E(r) = 1
P = 0.66

P = 0.33
S1=0.66

H1=0

H2=0.66

H3=0.66
S1=0.66

P = 1

S2=0.66 S1=0.66

P = 1

S2=0.66

P = 0.5

P = 0.5

S3=0.33

A B C

D E F
“Uncovered”

Fig 2. Sample MDP being built in a 2D continuous state space. A. Example states (open dots),
reached by two actions (solid and dotted arcs). Actions reaching filled dots terminated the episode.
B. Initial terminating preimages considered for learning, with their heuristic scores Hi shown, based
upon the rewards in the example data. C. An MDP state learned based upon preimage H2. Hote
the generalized state S1 could cover more example states than intended. Action arcs show the ag-
gregate reward and transition functions for S1. All calculations use γ=1. D. Next stage of pre-
image selection and scoring. E. MDP extended by generalizing preimage H3 into MDP state S2. F.
Final MDP after all preimages have been generalized. Note some transitions, such as the top one
from S3, may not lead to a learned state and are placed in a special “uncovered” state, with a score
of zero.

 Building Relational World Models for Reinforcement Learning 283

partition covers. The MDP in turn leads to a policy intended to maximize the rewards
received. AMBIL then exploits this policy to collect more examples from the do-
main. AMBIL is a batch algorithm. It iterates between building models and utilizing
those models in the domain. Figure 1 depicts a sample MDP produced by AMBIL.
The following sections explain the model-building process.

3.1 Terminology

AMBIL operates on a collection of examples containing sequences of {state, action,
reward} tuples from the RL domain we are attempting to solve. We will refer to
these as example states. Additionally, as we partition the example state space, the
partitions become states in an MDP. We will refer to these states as MDP states.

AMBIL bases its partitioning upon preimages of the current, partially-built MDP.
The preimage of an MDP state s for action a is the set of example states s’ that lead to s
via action a. A terminating preimage is the set of example states s’ in which action a
was taken, resulting in the termination of an episode with immediate reward of r ± δ. For
example, the terminating preimage of shots scored would be all example states in which
the agent shot, resulting in a score and an immediate reward of +1, ending the episode.

3.2 Algorithm Overview

Table 1 presents the AMBIL algorithm and Figure 2 depicts several stages of the algo-
rithm in operation.

When partitioning example space, AMBIL begins with an empty MDP model. It
then examines all terminating preimages and greedily selects one that scores the high-
est according to a heuristic (see Figure 2B). Once a preimage is selected, AMBIL
uses ILP to generalize the example states in the preimage into one or more first-order
logical rules, which may be include some negative examples in domains that are sto-
chastic. Each rule becomes a single MDP state, covering all of the example states that
match its logical rule. Each time AMBIL adds an MDP state, it calculates the transi-
tion and reward functions for that state by examining the example states covered by
the rule (see Figure 2C). Then, AMBIL applies value-iteration to obtain the score for
each state currently in the MDP. This process repeats, greedily selecting from all
previously unlearned terminating preimages and MDP state preimages (see Figure
2D-F), until the MDP covers at least a user-specified fraction of the example states.

Table 1. AMBIL’s MDP Model Building Algorithm

Input: E: set of example states
BK: background knowledge expressed in first-order predicate calculus

Do:
1. Initialize MDP to empty model
2. Score possible preimages and greedily select best one to learn
3. Learn rule(s) via inductive logic programming based upon selected preimage, E, and BK
4. Add learned rule(s) to MDP as new MDP state
5. Estimate MDP’s reward functions and transition probabilities
6. Calculate Q-values for all states in MDP
7. If examples states sufficiently covered, stop. Else go to step 2

Return: MDP

284 T. Walker et al.

3.3 Preimage Selection

When constructing an MDP, AMBIL greedily selects preimages to define the MDP.
These preimages consist of example states not currently covered by some MDP state
and lead to a previously learned MDP state or a terminating preimage.

A simple heuristic scores each eligible preimage by an optimistic Q-value using
Bellman-backups [1], according to Equation 1. The optimistic Q-value represents
the expected Q-value of the preimage’s constituent example states. Thus, the value
is the expected reward of a transition from an example state in the preimage to the
destination state of the MDP via action a. This value is optimistic since it assumes
AMBIL can learn the preimage exactly and that the example data is an i.i.d. sample
of all possible example states in the preimage. In RL domains, this will not be true,
since the distribution of example states visited depends upon the policy of the
learner. In addition, the generalized rule(s) learned to represent the preimage will
often cover parts of example space that were not part of the preimage. Even though
the optimistic Q-value is inaccurate, it serves as a good heuristic to guide preimage
selection.

Preimage(S,)

(,) (S)

(Preimage(S,))
Preimage(S,)

opt

s a

r s a Q

Q a
a

γ
∈

+

=
∑

 (1)

Given the current MDP, only a subset of the possible preimages are eligible for learn-
ing. AMBIL ignores preimages learned previously. Each preimage must contain a
minimum number of example states, guaranteeing that enough data will be available for
the rule-learning stage. Preimages must also obtain a minimum optimistic Q-value
score. This eliminates preimages unlikely to result in an increase in performance.

AMBIL exploits the relational nature of the domain during preimage selection. It
considers preimages with multiple actions whenever the user indicates that two or
more actions share similar behavior. In these cases, the preimage will be parameter-
ized appropriately for each action. For example, two shooting actions, such as
shoot(left) and shoot(right) used in Section 4’s experiments, might be considered to-
gether as shoot(GoalPart), where GoalPart is a variable parameterizing the portion of
the goal the shot was aimed at. This grouping allows AMBIL to exploit the relational
nature of some actions. Even when these groupings exist, AMBIL also considers the
single-action preimages since parameterized concepts may be more difficult to learn
or specialized versions of actions might be needed.

When AMBIL first creates an MDP, the MDP will contain no states to use as a ba-
sis for preimages. Thus, AMBIL currently uses terminating preimages to initiate the
MDP-building process. In the domains we have focused on, clearly defined terminat-
ing preimages exist (such as shots resulting in a scored goal). AMBIL could also use a
domain’s reward-structure information, if available, to determine the initial pre-
images. In non-sparse or infinite-horizon domains with no user-provided objective,
AMBIL could cluster the sampled rewards to determine initial concepts.

 Building Relational World Models for Reinforcement Learning 285

3.4 Learning Concepts Via ILP

For each preimage selected, AMBIL uses inductive logic programming to generate
first-order rules that describe the set of states that the preimage covers. Given an

shot_score(GoalPart) :-
x_distance_wrt_kick_at_goal (GoalPart) > 6.0
y_distance_wrt_kick_at_goal(GoalPart) > 2.0
angle_between_kick_&_goalie(GoalPart) < 129.

Example 1. Learned rule for shot_scored preimage, with a parameter to represent both
the shoot(left) and shoot(right) actions. The variable GoalPart allows this rule to be ap-
plied to shooting at either side of the goal, both during learning and problem solving.

example state, the learned rules classify whether or not it is in the preimage, i.e.
whether it leads to the relevant MDP state via the indicated action or not. Although
AMBIL could use simpler propositional methods to learn the preimage classification,
ILP allows the relational aspect of the domain to be exploited: similar actions can be
parameterized and learned as a single concept, similar domain objects can be general-
ized, and extensive background knowledge can be utilized to aid in describing the
preimages. Currently, AMBIL uses the ILP system Aleph [12].

AMBIL selects the positive and negative examples based upon the preimage being
learned. For a preimage(s,a), the example states that transitions to MDP state s via
action a, AMBIL collects, as positive examples, all example states where the action a
was taken and the following example state is covered by MDP state s. The negative
examples are the example states where action a was taken and the following state is
not covered by s. Example states in which the action a was not taken are ignored.
There are generally many more negatives than positives. AMBIL uniformly subsam-
ples the positive and negative examples to reduce Aleph’s runtime. Typically, we
subsample down to 500 total examples.

The positive and negative examples AMBIL provides to Aleph are in the form of sets
of first-order predicates. As such, the examples can be parameterized to contain addi-
tional information. As mentioned in Section 3.3, this allows AMBIL to learn multiple
actions as a single preimage. For example, the preimage “shots that score a goal” can be
parameterized to include the shot destination as an argument, such as
shot_scored(GoalPart). The user must specify which actions are similar and what pa-
rameters they require, but once that is done, AMBIL handles all of the parameterizations
automatically.

Example 1 shows a parameterized rule learned for a soccer domain involving two
shoot actions, shoot(left) and shoot(right). In this example, the positives contained all
examples that shot left or right and scored. The negative set contained all examples
that shot left or right and did not score.

3.5 Building the MDP

Given a learned preimage classification theory from ILP, AMBIL extends the MDP
model by adding states, one for each rule in the theory. We treat the separate rules

286 T. Walker et al.

from a theory independently since they may represent different aspects of the learned
preimage and doing so increases the specificity of the final model.

While AMBIL treats the learned model as an MDP, the model might not actually
be one. Often, the created model violates the Markovian assumptions required by
MDPs and might be better characterized as a partially observable Markov decision
process. However, in our experiments, even when the Markovian assumptions were
clearly violated, treating the model as an MDP still yielded good results and made the
calculation of the value function much faster.

In a proper MDP, states are discrete and disjoint. However, many of the rules gen-
erated by Aleph overlap with either other rules within a single preimage’s theory or
other states previously added to the MDP. In order to enforce disjointness among
MDP states, AMBIL orders the states by their creation order, essentially creating an
IF-ELSEIF-ELSE structure used to determine in which MDP state an example state
belongs. When AMBIL adds multiple rules from a single preimage’s theory, the cre-
ated states are ordered according to their accuracy on the Aleph training set.

After adding states to the MDP, AMBIL calculates the MDP’s state-transition
probabilities and reward functions. AMBIL computes the transition probability from
MDP state s to MDP state s’ via action a by counting the number of example states
that are covered by s and lead to s’ via action a, normalizing these counts by the num-
ber of times action a was taken in state s. Similarly, it calculates the expected reward
for action a from state s by averaging over the rewards seen in the training data.
AMBIL employs m-estimates to condition the transition probabilities. We use m=5 in
our experiments. In some cases, example states will exist that are not covered by any
MDP state. AMBIL assigns these states to a special default state called the uncovered
MDP state.

After it calculates the transition probabilities and rewards, AMBIL performs value-
iteration [15] for all states in the MDP, except the special uncovered MDP state. The
uncovered state’s Q-value is some domain-dependent “background” score (e.g., zero).
This discourages actions that would lead to the uncovered state. Although not neces-
sary in our experiments, AMBIL could utilize refinements of the standard value-
iteration algorithm, such as prioritized sweeping.

When adding states to the MDP, AMBIL must address several additional consid-
erations. If two or more states overlap, states added later may not have adequate data.
If the amount of data available to an MDP state is below some minimum threshold
(currently, five example states), AMBIL discards that particular state.

On occasion, when AMBIL adds a state, the policy action it recommends (the arg-
max Q over all actions for this state) is not the same as the action of the original pre-
image. When the action does not match the preimage, this is indicative of one of two
things: either a state does not have adequate data or Aleph improperly generalized the
preimage. In these cases, AMBIL could discard the MDP state. However, in our ex-
periments, this occurs infrequently and discarding the states is unnecessary.

3.6 The RL Learning Cycle

The previous sections described the process AMBIL uses to build a single MDP (and
the associated policy). In the complete learning cycle for a given RL domain,

 Building Relational World Models for Reinforcement Learning 287

r= 1

S 1 S 2 S 3

S 4

S 5

Fig. 3. Synthetic domain MDP. Arcs represent state-transitions for three separate actions. All ac-
tions are deterministic. S4 and S5 are terminating state. All rewards are zero, except for the single
action leading from S3 to S5.

AMBIL first gathers some initial data by interacting with the domain. It then repeat-
edly generates an MDP with a corresponding policy and interacts with the domain
following the new policy to gather more data. In each iteration, AMBIL attempts to
generate a new, higher-scoring policy.

Since the AMBIL model-building process is computationally expensive, we may
not want to rebuild a full model whenever new data is available. However, updating
the reward and transition functions for the MDP between full builds is computation-
ally feasible and does result in some improvement of the policy. We use this ap-
proach in the empirical results section below.

To gather initial data AMBIL either explores the domain randomly or uses another
RL learning algorithm (e.g.) standard model-free Q-learning as a bootstrap. In do-
mains with very sparse rewards under a random policy, the bootstrapping process is
preferred since it is more likely to obtain informative data.

After an MDP exists, when interacting with the RL domain, given an example
state, AMBIL determines the action to perform by matching the example state against
the states in the MDP model. The argmax of the Q-values for all actions for a given
state determines the policy for that state. Additionally, as done by standard RL algo-
rithms, AMBIL performs a small fraction of exploratory actions.

4 Empirical Results

We present empirical results in two domains: a synthetic RL domain and the Breakaway
RL domain [8], a subtask of the RoboCup soccer domain. We compare AMBIL with the
standard SARSA(λ) [15] algorithm and with a model-learning approach based upon a
Dyna-Q architecture [14]. We choose Dyna-Q as a control because it is an established
approach for creating models of an environment in order to speed up RL.

4.1 Domains

The synthetic domain, shown in Figure 3, is a simple five-state, three-action, non-
deterministic MDP, with two numeric features (drawn from overlapping uniform dis-
tributions), and a sparse reward structure, with the only reward occurring in one of
two terminating states. The feature values for each state purposely overlap to simu-
late uncertainty in determining the underlying MDP state. We provided the learners

288 T. Walker et al.

no direct knowledge of the underlying MDP. They must interact with the domain to
obtain information.

The Breakaway domain is a 2-on-1 soccer end-game task based upon the RoboCup
soccer simulator. In Breakaway, M attackers attempt to score on N defenders, including
a goalie. Only the attacker with the ball makes policy decisions, while the attackers
without the ball and the defenders follow hard-coded policies. The reward structure for
this domain is very sparse, with a reward of one when a goal is scored and zero all other
times. Each Breakaway episode is limited to 10 seconds, after which the episode ends
with a zero reward. The Breakaway domain is highly non-deterministic with many real-
valued features (for 2-on-1, there are 27 features).

Our Breakaway state representation is that of Maclin et al. [8]. For the Q-learner,
we discretize these features into 32 overlapping intervals called tiles, each of which
becomes a Boolean feature. Stone and Sutton [13] used this enhancement in Ro-
boCup; tiling allows linear function approximators to represent non-linear concepts.

For Breakaway, the AMBIL background knowledge consists of feature_less_than,
feature_greater_than, feature_in_range, and feature_not_in_range predicates. Addi-
tionally, the background includes predicates that provide information relative to
passes and kicks. For example, x_distance_wrt_kick measures the distance from the
kicker to an object along the direction of the kick. The background knowledge was
designed to allow Aleph to discretize the base features, rather than add additional
high-level domain knowledge.

4.2 Learning Algorithms

All three learning algorithms, AMBIL, SARSA(λ), and Dyna-Q, are implemented as
batch learners and, as much as possible, we used the same tuning parameters on the
standard Q-learner, giving the benefit of doubt to the experimental control. Parame-
ters were tuned on the Q-learning base line and used for the other learners. Each
learner “batch learns” every 25 games. All use an exploration rate of 1% and a dis-
count factor of 0.97. For the Q-learner and Dyna-Q we used a λ setting, with λ=1 for
recent example states decaying to λ=0 after a fixed number of games (200 for Break-
away, 50 for the synthetic MDP).

Both AMBIL and Dyna-Q use the standard Q-learning algorithm until enough data
is available to start the respective algorithm. Fifty and 250 games are played prior to
Dyna/AMBIL running for the synthetic and Breakaway domains, respectively.

Dyna-Q creates models that predict the feature values in the next state and the re-
ward function of the domain directly from the data and then uses the models to train
Q-functions. We modeled the reward function using a C4.5 decision tree [10]. Next
state feature values are modeled independently of each other using support vector
regression. We attempted to make these models as accurate as possible, although
modeling high-dimensional, real-valued environments is known to be difficult. The
next state models created by Dyna-Q are used to create synthetic examples. These
examples are then utilized in the same manner as real examples. We created enough
synthetic data to maintain a 4-1 ratio of actual examples to synthetic examples.

For the Breakaway domain, we also attempted to implement an RRL algorithm [5], a
combination of traditional Q-learning with a relational TILDE-RT [2] function approxi-
mator. We were unable to obtain results better than random walks with this approach.

 Building Relational World Models for Reinforcement Learning 289

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300 400
Games Played

A
ve

ra
g

e
S

co
re

AMBIL
Q-Learner
Dyna-Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 250 500 750 1000 1250 1500
Games Played

A
ve

ra
g

e
S

co
re

AMBIL
Q-Learner
Dyna-Q

Fig. 4. Empirical Results. (Left) Synthetic Domain averaged reward received per game, aver-
aged over previous 50 games. (Right) 2-on-1 Breakaway average reward received per game,
averaged over previous 250 games.

4.3 Results

Figure 4 shows the average reward per game for the synthetic domain and for the 2-
on-1 Breakaway domain. For both domains, we performed 10 runs of each algorithm
and averaged the results. The reward per game is averaged over the previous 50
games for the synthetic domain and previous 250 games for the Breakaway domain.

In both domains, AMBIL outperformed both the Q-learner and the Dyna-Q algo-
rithms, both in terms of early learning rate and asymptotic performance.

Several factors contribute to AMBIL’s early performance gains over the Q-learner.
The background knowledge we provide to AMBIL offers it an advantage. We at-
tempted to provide propositionalized versions of the background knowledge to the
standard Q-learner, but this resulted in worse performance, presumably due to overfit-
ting allowed by the greatly increased number of features.

Beyond the background knowledge, AMBIL’s models, by construction, focus on
reaching high-reward states immediately and generalizing accurately. In Q-learning,
on the other hand, reward information propagates slowly through the model by the
means of SARSA(λ) backups and generalization performed by function approxima-
tion can be inaccurate, especially early in the learning curve.

The Dyna-Q implementation performed poorly in both domains. This was due to
the difficulty of modeling the underlying domain directly. It is the difficulty of this
type of modeling that motivated AMBIL’s approach.

5 Related Work

Reinforcement learning using TD methods has been studied extensively. Sutton and
Barto [15] provide an excellent summary of the basic techniques.

Dietterich and Flann [3] introduced the concept of using chains of preimages in
their explanation-based reinforcement learning. Their action chaining approach shares

290 T. Walker et al.

some basic similarities with AMBIL. However, their approach requires an accurate
definition of the action consequences.

Kersting et al. [7] create abstract relational MDPs with many similarities to our
own models. However, their approach to learning abstract MDPs requires the underly-
ing MDP. We essentially provide a learning method capable of learning a similar ab-
stract MDP in complex domains without knowledge of the underlying MDP.

Morales’ [9] rQ-learning provides a state-abstraction approach to reinforcement
learning, although their approach does not use an MDP representation. Unlike
AMBIL, which learns the abstract states, Morales’ approach requires user-provided
abstractions. However, rQ-learning supports STRIPs-like operators with more rich-
ness then AMBIL’s actions and provides a learning algorithm for refining these
operators.

Van Otterlo’s [11] CARCASS system provides a relational MDP representation,
similar to AMBIL’s, and provides methods to score and use the resulting MDP based
upon interaction with the domain. Like rQ-learning, Van Otterlo’s methods assume
user-provided abstractions.

As an alternative approach to building an MDP, Džeroski et al. [5] proposed using a
relational decision tree, such as TILDE [2], during Q-learning. Like AMBIL, this allows
for both the integration of background knowledge and the exploitation of the relational
aspects of actions and objects in the domain. However, like Q-learning, their approach
represents only the long-term expected reward and does not model the immediate re-
ward or transition information, while AMBIL does. Furthermore, they are still perform-
ing function approximation, which can be difficult for RL. Lecoeuche [6] and Dries-
sens et al. [4], among others, further refined this approach.

Another recent approach to relational reinforcement learning, by Zettlemoyer et al.
[17], also models the domain without building an MDP. Instead, they learn probabil-
istic STRIPs-like rules. A probabilistic planner uses these rules to solve the domain.
Like AMBIL, they focus on the state transitions resulting from observed actions, al-
though the rule learning process and final model does not resemble AMBIL’s.

6 Conclusions and Future Work

Models of reinforcement learning domains allow faster learning than model-free Q-
learning methods, as demonstrated in our empirical study, and provide information about
the structure of the domain. Our algorithm, AMBIL, builds MDPs via inductive logic
programming techniques, focusing on areas of high reward to guide search. The use of
ILP techniques allows our models to represent relational domains, with abstraction of
both objects and actions, and allows the incorporation of background knowledge.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments.
This research is supported by DARPA IPTO under contract FA8650-06-C-7606.

 Building Relational World Models for Reinforcement Learning 291

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, New Jersey
(1957)

2. Blockeel, H., De Raedt, L.: Top-down induction of first-order locical decision trees. Arti-
ficial Intelligence (June 1998)

3. Dietterich, T., Flann, N.: Explanation-based learning and reinforcement learning: A uni-
fied view. In: Proceedings of the International Conference on Machine Learning (1995)

4. Driessens, K., Ramon, J., Blockeel, H.: Speeding up relational reinforcement learning
through the use of an incremental first order decision tree algorithm. In: Proceedings of the
European Conference on Machine Learning (2001)

5. Džeroski, S., De Raedt, L., Blockeel, H.: Relational reinforcement learning. In: Proceed-
ings of the International Conference on Machine Learning (1998)

6. Lecoeuche, R.: Learning optimal dialog management rules by using reinforcement learn-
ing and inductive logic programming. In: Proceedings of the North American Chapter of
the Association of Computational Linquistic (June 2001)

7. Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes relational. In: Proceedings of
the International Conference on Machine Learning (2004)

8. Maclin, R., Shavlik, J., Torrey, L., Walker, T., Wild, E.: Giving advice about preferred ac-
tions to reinforcement learners via knowledge-based kernel regression. In: Proceedings of
the Twentieth Conference on Artificial Intelligence (2005)

9. Morales, E.F.: Scaling up reinforcement learning with a relational representation. In: Pro-
ceedings of the Workshop on Adaptability in Multi-Agent Systems at AORC (2003)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

11. Van Otterlo, M.: Efficient reinforcement learning using relational aggregation. In: Pro-
ceedings of the Sixth European Workshop on Reinforcement Learning (2003)

12. Srinivasan, A.: The Aleph Manual (2001)
13. Stone, P., Sutton, R.: Scaling reinforcement learning toward RoboCup soccer. In: Proceed-

ings of the International Conference on Machine Learning (2001)
14. Sutton, R.: Integrated modeling and control based on reinforcement learning and dynamic

programming. In: Advances in Neural Information Processing Systems, vol. 3 (1991)
15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge

(1998)
16. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, Cambridge University

(1989)
17. Zettlemoyer, L.S., Pasula, H.M., Kaelbling, L.P.: Learning Planning Rules in Noisy Sto-

chastic Worlds. In: Proceedings of the Twentieth Conference on Artificial Intelligence
(2005)

An Inductive Learning System for XML

Documents

Xiaobing Wu

CSIRO ICT Centre, Australia

Abstract. This paper presents a complete inductive learning system
that aims to produce comprehensible theories for XML document clas-
sifications. The knowledge representation method is based on a higher-
order logic formalism which is particularly suitable for structured-data
learning systems. A systematic way of generating predicates is also given.
The learning algorithm of the system is a modified standard decision-tree
learning algorithm driven by predicate/recall breakeven point. Experi-
mental results on XML version of Reuters dataset show that this system
is able to produce comprehensible theories with high precision/recall
breakeven point values.

Keywords: higher-order logic, knowledge representation, XML docu-
ments, precision-recall, decision-tree learning.

1 Introduction

XML (eXtensible Markup Language) documents are one of the most impor-
tant sources of semistructured data. Semistructured data is data that has some
structure, but the structure may not be rigid, or complete and generally the data
does not conform to a fixed schema. Higher-order logic is particularly suitable
for structured-data learning systems, as it is able to represent individuals with
complex structures, precisely describe the hypothesis languages, and support the
testing of hypotheses on individuals.

Decision-tree algorithms for learning are well-studied. In contrast to many
other learning algorithms, such as neural networks and support vector machines,
decision trees can learn theories that are comprehensive to users. A comprehen-
sible theory could provide insight about the observations. Most existing decision-
tree algorithms are based on accuracy heuristics. However, sometimes accuracy
is not a good criterion for classification. Precision and recall are two trade-off cri-
teria which are traditional standards for text document classification problems.
Most XML documents have substantial free text content, so precision and recall
are more appropriate criteria than accuracy for XML document classification.

This paper presents a novel inductive learning system for XML documents.
Section 2 gives the representation method for XML documents using the higher-
order logic formalism. Section 3 presents the decision-tree learning algorithm
driven by precision and recall. Section 4 shows the experimental results on an
XML version of the Reuters dataset.

H. Blockeel et al. (Eds.): ILP 2007, LNAI 4894, pp. 292–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Inductive Learning System for XML Documents 293

2 Knowledge Representation for XML Documents

We adopt a typed higher-order logic as the knowledge representation formalism
[6] for XML documents, as it is particularly suitable for representing individ-
uals with complex structures. The higher-order logic is used in two essential
ways here. First, individuals are represented as higher-order logic terms; second,
predicates are constructed by composing transformations.

2.1 The Structure of an XML Document

This section is an overview of the general structure of XML documents.
An XML document has a nested structure. Each entity is enclosed by a start

tag and an end tag. This structure is best described by an example. A simple
but complete XML document is given in Figure 1. The first line of the document
is the XML version declaration. The second line is the declaration of its DTD
(Document Type Definition). Next comes the root element bib which has two
sub-elements book describing information about two books. The first book has
four further sub-elements title, author, publisher and price, which describe the
first book. The first book also has an attribute year with a value of 2003. The
author further contains two sub-elements last and first which contains the last
name and the first name of the author, respectively. The second book element is
similar to the first one, but contains three author elements.

2.2 Representation of Individuals

A well-formed XML document is represented as a six-tuple.

type XML = XMLDecl × Misclist × DTD × Misclist × Element × Misclist

Here, XMLDecl represents the XML declaration; Misclist represents a list of mis-
cellaneous items such as comments, processing instructions, and spaces; DTD
represents the document type declaration; and Element represents the root ele-
ment of the document. All these six components are non-atomic type values and
could be further defined. As an example, we give the representation of Element
below.

The formal representation for an element is

data Element = Elem TagName Attributelist Contents
type TagName = String

type Attributelist = [Attribute]
type Contents = [Content]

Here, type Elem is defined as a data constructor which has three arguments
representing the element name, the attributes and the element contents, respec-
tively. TagName is a synonym of type String . Attributelist and Contents is a list
of attributes and a list of content, respectively.

294 X. Wu

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE bib SYSTEM‘‘books.dtd’’>
<bib>

<book year=‘‘2003’’>
<title>Logic for Learning</title>
<author>

<last>Lloyd</last>
<first>John</first></author>

<publisher>Springer</publisher>
<price>49.95</price>

</book>
<book year=‘‘2000’’>
<title>Data on the Web</title>
<author>

<last>Abiteboul</last>
<first>Serge</first></author>

<author>
<last>Buneman</last>
<first>Peter</first></author>

<author>
<last>Suciu</last>
<first>Dan</first></author>

<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
</bib>

Fig. 1. An example XML document with an external DTD

An attribute is composed of the attribute name and attribute value, and is
represented using a tuple as follows.

type Attribute = AttName × AttValue

where AttName and AttValue are both synonym of String, written as follows.

type AttName = String
type AttValue = String

It is the element content that makes XML document nested and hierarchical.
The content of an element could be another element, a piece of text, a reference
to some entities, a CDATA section, a processing instruction or a comment. The
content is formally represented as follows.

data Content = El Element | Tx CharData | Ref Reference | CD CData |
ContentPI PI | ContentCom Comment

An Inductive Learning System for XML Documents 295

Here, El , Tx , and so on, are constructors of type Content . Constructor El needs
an argument of type Element to construct data of type Content , and Tx needs an
argument of type CharData to construct a type Content , and so on. Type Element
has been introduced above. CharData is a synonym of a list of characters.

type CharData = [Char]

A complete representation for XML documents using this method can be found
in [9].

2.3 Representation of Features

Here, features refer to predicates on the type of individuals. These predicates
are constructed incrementally by composition of transformations using predicate
rewrite systems [6]. Composition is handled by the composition function ◦ : (a →
b) → (b → c) → (a → c) defined by ((f ◦ g) x) = (g (f x)). A transformation f
is a function having a signature of the form f : (�1 → Ω) → · · · → (�k → Ω) →
μ → σ, where �1, . . . , �k, σ and μ are all types, k ≥ 0, and Ω is the type of the
booleans.

Transformations on XML are classified into two categories: generic trans-
formations and data-specific transformations. Generic transformations come
straight from the XML document representation and are applicable to all well-
formed XML documents. Some examples of generic transformations are given
next.

projRootElement : XML → Element
projTagName : Element → TagName
projAttributes : Element → Attributes
projContents : Element → Contents

Here, projRootElement projects onto the root element of an XML document.
projTagName , projAttributes and projContents project an element onto its tag
name, attributes and contents, respectively.

Another example of generic transformations on element attributes are given
next.

listToSet : Attributes → {Attribute}
setExists1 : (Attribute → Ω) → {Attribute} → Ω

The above two transformations convert a list of attributes to a set of attributes
and check whether the set has an attribute satisfying a predicate, respectively.

Data-specific transformations capture some specialized concepts that will be
useful in a particular application. For example, a transformation (= “book”) :
TagName → Ω is a data-specific transformationwhich checkswhether a TagName
is the string “book”.

296 X. Wu

A predicate rewrite system is used to define and enumerate a set of predicates
relevant to a particular application by using the transformations. A predicate
rewrite system is a finite relation � on the set of predicates definable in the
logic. A predicate rewrite has the form p � q, where p and q are predicates and
q is stronger than p. Given a predicate rewrite system, to generate a predicate
search space for an application, one starts with an initial predicate p0, usually
the weakest one top (defined by (top x) = True for all x), and generates all
the predicates that can be obtained by a predicate derivation step from p0, then
all the predicates that can be obtained from those by a predicate derivation
step, and so on. Now a simple predicate rewrite system is given as an example
to illustrate how to generate a predicate search space via the predicate rewrite
system.

top � projRootElement ◦ top
top � ∧2 (projTagName ◦ top projContents ◦ top)

top � listToSet ◦ top
top � setExists1 (∧2 (isElement projContentElement ◦ top))

top � (= “bib”)
top � (= “book”)

top � (= “author”)
top � (= “price”)

The following is a path in the search space using the above predicate rewrite
system with a start from the weakest predicate top.

top
projRootElement ◦ top
projRootElement ◦ ∧2 (projTagName ◦ top projContents ◦ top)
projRootElement ◦ ∧2 (projTagName ◦ (= “bib”) projContents ◦ top)
projRootElement ◦ ∧2 (projTagName ◦ (= “bib”) projContents ◦

listToSet ◦ top)
projRootElement ◦ ∧2 (projTagName ◦ (= “bib”) projContents ◦

listToSet ◦ setExists1 (∧2 (isElement
projContentElement ◦ top)))

projRootElement ◦ ∧2 (projTagName ◦ (= “bib”) projContents ◦

listToSet ◦ setExists1 (∧2 (isElement
projContentElement ◦ ∧2 (projTagName ◦

(= “book”) projContents ◦ top))))
. . .

An Inductive Learning System for XML Documents 297

3 Precision/Recall-Driven Decision-Tree (PRDT)
Algorithm

Having represented a well-formed XML document as a typed higher-order logic
term, in this section, we will present a decision-tree learning algorithm based on
the precision and recall criterion for XML document classifications.

3.1 Precision and Recall

Precision and recall were originally two statistical measures widely used in infor-
mation retrieval. They have been borrowed to evaluate the performance of text
classification [5,7,10] recently.

Precision Pr and recall Rc can be defined using TP , FP and FN as follows

Pr =
TP

TP + FP
Rc =

TP

TP + FN
(1)

where TP is the number of documents correctly assigned to the positive class;
FP , the number of documents incorrectly assigned to the positive class; FN , the
number of documents incorrectly assigned to the negative class; and TN , the
number of documents correctly assigned to the negative class.

Normally there is a trade-off between high precision and high recall. A good
classifier should have both high precision and high recall. When precision and
recall are equal (or very close), this point is called precision/recall-breakeven
point (BEP) of the system. BEP is commonly used as a performance measure
in text classification problems. By (1), we can see if FP and FN are equal (or
very close), we get at BEP.

The F-measure was introduced by van Rijsbergen [8]. The most commonly
used form of F-measure is when β = 1. In this case, the F-measure becomes F1
measure which balances precision and recall. F1 measure is defined as:

F1 =
2Pr · Rc

Pr + Rc
(2)

From (2), we can see when precision and recall are equal (at BEP), F1 = Pr =
Rc. F1 is maximized when precision and recall are equal or close (at BEP). Hence,
if we maximise F1, we can get the BEP value which is equal (or close) to the
maximized F1. By using F1 measure, we turn the two measurements into a single
measurement which is easier to work with in an optimisation system.

3.2 Structured Feature Selection

Unlike unstructured text documents, the same word appearing in different el-
ements of an XML document could have different meaning or influence on

298 X. Wu

document classification. Different elements could contain irrelevant text content.
Therefore, it is not suitable to gather all the text in a XML document and
conduct feature selection. we propose to build n independent corpora of text by
analysing the DTD, where n is the number of elements in the DTD. The text in
an element of an XML document is collected and formed a new text document
with the same name as the original XML document, and stored in a corpus
corresponding to this element. Thus, all the documents in the same corpus come
from the same element and are ready to do feature selection.

In text learning, a feature is defined for each word in the training set. Feature
selection is commonly used when learning on text, as text documents often have
thousands of features. Some of them are not relevant or not beneficial for the
performance of the text learning. Removing these features can greatly improve
the learning speed and the classification accuracy. Feature selection aims to select
a minimal subset of features which still contain enough features for classification.
The commonly used approach for feature selection in text learning is to use a
fixed measure method to evaluate and score all the features and then sort them
by score.

Mutual information [5,3,11] is a commonly used criterion for feature selection
in text categorization, and this method is adopted in this work. It measures the
mutual information between a word and a class. In information theory, mutual
information is defined as the reduction in the entropy of a random variable due
to introducing another random variable.

Like in traditional text learning, we introduce a weighting scheme into our
text features. The occurrences of some features in a document provides a better
indication of the content of the document than other features. The locality of a
feature decides its weight in classification, i.e., the localised feature that occurs
frequently in only a few documents is more informative, but the global feature
that occurs frequently in most of the documents is not informative. We adopt the
TFIDF measure which is an important and commonly used weighting scheme.
It combines term frequencies (TF) with inverse document frequencies (IDF).
Term Frequency TF (t , d) is defined as the number of times a term t occurs
in a document d. Document Frequency DF (t) is the number of documents in
which term t occurs at least once. The inverse document frequency IDF (t) can
be calculated from DF (t) by

IDF (t) = log(
N

DF (t)
)

where N is the total number of documents.
TFIDF (t , d) is defined as

TFIDF (t , d) = TF (t , d) × IDF (t)

The idea behind the TFIDF measure is that a term t is more important as a
feature for document d if it appears more frequently in d and appears in fewer
documents overall.

An Inductive Learning System for XML Documents 299

Under this model, a text document d is represented as

d =< (t1 , tfidf (t1)), . . . , (tn , tfidf (tn)) >

where t1 , . . . , tn are the IDs of the features in the feature subset which appear
in document d.

3.3 Node Selection

Starting from a single root node containing all the training examples (some in-
dividuals with annotated classifications), the decision-tree algorithm iteratively
makes a binary split at a selected node in the existing tree. In our PRDT al-
gorithm, we use a novel node selection method to control the system to work
towards reducing the difference between the precision and recall. Next, we give
some theoretical analysis for our node selection method.

First, we define the TP , FP and FN values for the node associated with E ,
where E is a (non-empty) set of examples.

Definition 1. Let E be a set of examples. We define:

1. TP(E) = nE
+, FP(E) = nE

−, FN (E) = 0 if nE
+ ≥ nE

− ≥ 0
2. TP(E) = 0, FP(E) = 0, FN (E) = nE

+ if nE
− > nE

+ ≥ 0.

In the above definition, nE
+ and nE− denote the number of positive examples and

negative examples in E , respectively. A decision-tree node is called a FP-type
node if FP(E) ≥0, otherwise an FN-type node. It is not hard to see that an
FP-type set of examples is a positive majority set of examples and an FN-type
set of examples is a negative majority set of examples.

For a decision tree T , to balance the FP(T) and FN (T), our node selection
method is

1. select a FP-type leaf node of T , if FP(T) > FN (T), or
2. select a FN-type leaf node of T , if FP(T) < FN (T).

Next, we give a proposition to support our node selection method above. Let
P = {E1, E2} be a partition of a set of examples E . Proposition 1 shows that
FP(P) will decrease and FN (P) will increase if E is FP-type. Similarly, FN (P)
will decrease and FP(P) will increase if E is FN-type.

Proposition 1. Let E be a set of examples and P = (E1, E2) a partition of E.

1. If E is FP-type, then FP(E) ≥ FP(P), FN (E) ≤ FN (P).
2. If E is FN-type, then FP(E) ≤ FP(P), FN (E) ≥ FN (P).

Proof. 1. E is a FP-type, so it is a set of positive majority examples. There are
three cases to consider: E1 and E2 are both FP-type, both FN-type, or one
FP-type and one FN-type.
(a) Suppose E1 and E2 are both FP-type. FP(P) = nE1− + nE2− = n−(E).

Thus, FP(E) = FP(P). FN (E), FN (E1) and FN (E2) are all 0. Thus,
FN (E) = FN (P). Now the first case has been proved.

300 X. Wu

(b) Suppose E1 and E2 are both FN-type. Partition P partitions a positive
majority set of examples, E , into two negative majority sets of examples
E1 and E2. This case could not happen.

(c) Suppose E1 and E2 are one FP-type and one FN-type. Without loss of
generality, we suppose E1 is FP-type and E2 is FN-type. Thus, nE1

+ ≥ 0 ,
nE2− > 0, FP(E1) = nE1− , and FP(E2) = 0. FP(P) = nE1− < nE1− + nE2− = FP(E).
FN (E2) = nE2− > 0 . FN (P) = FN (E1) + FN (E2) = nE2− , while FN (E) = 0 .
Thus, FN (E) > FN (P).

2. Similar to the proof of 1.

Proposition 1 states that the FP value will decrease or not change, and the
FN value will increase or not change by partitioning a FP-type set of exam-
ples. Similarly, the FP value will increase or not change, and the FN value will
decrease or not change by partitioning a FN-type set of examples. As noted in
Case (c) of the Part 1 of the proof, the FP (FN) value will strictly decrease
(increase) by splitting a FP-type set of examples into two different types of sets
of examples. In the same way, the FP (FN) value will strictly increase (de-
crease) by splitting a FN-type set of examples into two different types of sets of
examples.

3.4 The Precision/Recall-Driven Decision-Tree Algorithm

In this section, the Precision/Recall-driven Decision-Tree (PRDT) algorithm will
be described. (See Figures 2 and 3.)

Figure 2 is the PRDT algorithm. The goal of this algorithm is to find a
tree that has the best precision-recall breakeven point value. Starting from a
single node which is composed of the training data, the algorithm works towards
two goals at the same time: looking for the point where the global precision
and recall are equal and improving the F1 measure. The first goal is achieved
by selecting the node which can most balance the two values, that is, the leaf
with the largest FP when FP(T) ≥ FN (T) and the leaf with the largest FN
otherwise. The second goal is achieved by finding a predicate to split this node
which can best improve F1(T). If the partition made to the selected node fails
to improve F1(T), the leaf node with the next largest FP or FN will be chosen,
and this procedure will continue until all the leaf nodes with positive FP or FN
are tested and F1(T) fails to improve.

The training examples and a predicate rewrite system are input into the
PRDT algorithm. The tree T is initialised as a single node containing all the
training examples. The algorithm then enters an iteration where T is kept split-
ting. At the start of each iteration, i.e., when a new split is going to be made,
three kinds of leaves are managed in three different sets: leavesFP , leavesFN
and leavesF , which store those unseen leaves that have positive FP, positive
FN and positive FP or FN, respectively. Leaves(T) returns the set of leaves of
tree T . The algorithm then enters an inner iteration which selects a leaf and splits

An Inductive Learning System for XML Documents 301

it. The leaf to be selected for splitting should mostly balance the FP(T) and
FN (T). If FP(T) > FN (T), then the leaf with the biggest FP is selected; if
FP(T) < FN (T), then the leaf with the biggest FN is selected; otherwise if
FP and FN are already balanced but non-zero, then the leaf with the biggest
FP or FN is selected. However, if F1 (T) could not be improved by splitting the
selected leaf, then this splitting should be given up and the next leaf that satisfies
the corresponding conditions should be considered. This iteration continues until
F1(T) improves by splitting the selected leaf or there is no leaf to select in the
corresponding leaf set.

In Figure 2, T (l , P) denotes the new tree obtained by splitting leaf l with
partition P .

function PRDT (E ,�); returns: a decision tree;

inputs: E , a set of examples;
�, a predicate rewrite system;

T := single node (with examples E);
finished := false;
while not finished do

leavesFP := {l|FP (l) > 0 ∧ l ∈ Leaves(T)};
leavesFN := {l|FN(l) > 0 ∧ l ∈ Leaves(T)};
leavesF := leavesFP ∪ leavesFN ;
while true do

if FP(T) ≥ FN (T) ∧ leavesFP �= φ then
l := argmaxl∈leavesFP FP (l);
leavesFP := leavesFP \ {l};

else if FP(T) < FN (T) ∧ leavesF N �= φ then
l := argmaxl∈leavesFN FN(l);
leavesFN := leavesFN \ {l};

else if FP(T) = FN (T) �= 0 ∧ leavesF �= φ
l := argmaxl∈leavesF (FP (l) + FN(l));
leavesF := leavesF \ {l};

else
finished := true;
break;

p := Predicate(TP(T),FP(T),FN (T),El,�);
P := partition of El induced by p;
if F1(T (l,P)) > F1(T) then

T := T (l,P);
break;

label each leaf node of T by its majority class;
return T ;

Fig. 2. Decision-tree algorithm based on the precision/recall heuristic

302 X. Wu

The function Predicate in the PRDT algorithm is shown in Figure 3. The
predicate output by this algorithm is the one that could best improve the global
F1 measure of the tree. The TP , FP and FN of the current tree T , the set of
training examples in the selected leaf and the predicate rewrite system are input
into function Predicate . An openlist is used to keep all the candidate predicates.
Variable predicate is used to keep the current best predicate, and bestScore is
used to keep the F1 of the current best predicate. Initially, the openList contains
only the weakest predicate top, and the bestScore is set to be the F1 of the
current tree T . The algorithm then enters an iteration. In each iteration, the
first candidate predicate is drawn from the openlist and a sub-search space is
generated from this predicate. Each predicate q in this sub-search space is tested
by creating a new partition P using it. The F1 of the tree, after adding the new
partition P , is computed using the updated TP , FP and FN . If F1 is higher
than the current bestScore, the best predicate and the best score are set as q and
its corresponding F1, respectively. Predicate q is also inserted into the openlist
as a candidate for further sub-search space. The iteration terminates when the
openlist is empty. Finally the predicate that most improves the F1 of the tree
by splitting the selected leaf is returned.

Note that function predicate may not terminate if the search space defined by
� is infinite. In this case, a non-negative parameter cutout can be set to stop
the searching if the algorithm investigates cutout predicates without finding a
better predicate than the current best predicate. Every time a new predicate is
found, the cutout parameter is reset to the initial value.

4 Experiments

In this section, experiments on a real-world dataset, the XML version of Reuters
dataset, is reported. Reuters dataset is a traditional test collection for text cat-
egorization.

4.1 The Dataset

Reuters-215781 is a collection of newswire stories in Reuters newswire in 1987. It
is a commonly used test collection for text classification [4,11,5,1]. The original
collection consists of 22 SGML data files. Each of the first 21 files contain 1000
articles, while the last contains 578 articles.

The 21578 documents are assigned to 135 categories according to their TOP-
ICS attributes. The “ModApte” split, which leads to a corpus of 9603 training
documents and 3299 test documents, is used in all experiments here. The number
of documents in each category varies widely, ranging from “Earn” which contains
3964 documents to “Castor-oil” which contains only one document. However, the
ten most frequent categories account for 75% of the training instances. These
ten categories are often used in the experiments of text categorization.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/

An Inductive Learning System for XML Documents 303

In the preprocessing, each article in each SGML file was transformed to an
XML document. In each XML document, there are altogether about 12 elements.
The categories of an XML document are set by element TOPICS which are de-
termined by the text content of the document instead of other factors. The text
content of the article is stored in element TEXT which has four sub-elements:
TITLE, BODY, AUTHOR and DATELINE. TITLE stores the title of the story
and BODY stores the main text of the story. The background knowledge tells
us that the hypothesis should be with the element TEXT, to be more specific,
should be with element TITLE and BODY. This information helps us build the
predicate rewrite system.

The text contents in the XML documents are preprocessed using the struc-
tured feature selection method described in Section 3.2. The text content in an
element is collected and formed a new text document and stored in a

function Predicate(TP , FP ,FN , E ,�) returns a predicate;

inputs: TP , TP of the current existing tree;
FP , FP of the current existing tree;
FN , FN of the current existing tree;
E , a set of examples;
�, a predicate rewrite system;

openList := [top];
predicate := top;
calculate Pr and Rc of the current existing tree;
bestScore := 2Pr×Rc

Pr+Rc ;

while openList �= []

p := head(openList);
openList := tail(openList);
for each LR redex r via r � b, for some b, in p do

q := p[r/b];
if q is regular then

P := partition of E induced by q;
update TP , FP , FN ;
update Pr , Rc;
F1 := 2Pr×Rc

Pr+Rc ;
if F1 > bestScore then

predicate := q;
bestScore := F1;

openList := Insert(q , openList);

return predicate ;

Fig. 3. Algorithm for finding a predicate to split a node

304 X. Wu

corpus corresponding to this element. Feature selection is done independently for
each corpus. The procedure of the feature selection includes stop words removal,
stemming, feature selection and feature weighting.

4.2 Experimental Results

Part of the predicate rewrite system used in our experiments are as follows.

top � projRootElement ◦ top
top � ∧2 (projTagName ◦ top projContents ◦ top)
top � listToSet ◦ top
top � setExists1 (∧2 (isElement projContentElement ◦ top))
top � setExists1 (∧2 (isFeature projContentFeature ◦ top))
top � setExists1 (∧2 (proFeatureId ◦ top projFeatureWeight ◦ top))
top � (= REUTERS)
top � (= i)
top � (≥ x)
top � (≤ y)

In the above predicate rewrite system, i is an integer representing the text
feature number, and x (0 ≤ x ≤ 1) and y (0 ≤ y ≤ 1) represents the feature
weights.

One binary decision tree was built for each of the 10 most frequent classes.
Table 1 gives the precision/recall-breakeven point value on the ten most frequent
categories and their micro-average for five learning algorithms. The results for
Findsim, NBayes, BayesNets and LinearSVM are reported in [2]. No published

Table 1. Precision/recall-breakeven point on the ten most frequent Reuters categories
and their micro-average

Findsim NBayes BayesNets PRDT LinearSVM

earn 92.9% 95.9% 95.8% 96.4% 98%
acq 64.7% 87.8% 88.3% 85.8% 93.6%
money-fx 46.7% 56.6% 58.8% 66.5% 74.5%
grain 67.5% 78.8% 81.4% 93.9% 94.6%
crude 70.1% 79.5% 79.6% 84.9% 88.9%
trade 65.1% 63.9% 69.0% 71.2% 75.9%
interest 63.4% 64.9% 71.3% 74.2% 77.7%
ship 49.2% 85.4% 85.4% 76.6% 85.6%
wheat 68.9% 69.7% 82.7% 92.1% 90.3%
corn 48.2% 65.3% 76.4% 90.4% 90.3%

microave 64.6% 81.5 % 85.0 % 88.0 % 92.0 %

An Inductive Learning System for XML Documents 305

results are available for the distance between the precision and recall on the
breakeven point for those algorithms. Table 2 summarises the precision and
recall on the test set for each of the ten classes on the test set for PRDT. The
two values of most classes are very close (around 5%), and the average difference
of the two values is 8.1%.

Table 2. The precision and recall value on the ten most frequent categories of Reuters
and their average

earn acq money grain crude trade intst ship wht corn avr

Pr 95.5 89.6 72.2 91.1 86.7 67.2 79.6 84.7 88.0 84.4 89.2
Rc 97.3 81.9 60.9 96.6 83.1 75.2 68.7 68.5 96.2 96.4 86.8

From Table 1 and Table 2, we can see that the PRDT algorthm performs well
on producing hypotheses with high BEP values on all 10 classes. Another im-
portant point is that the PRDT algorithm provides comprehensible hypotheses
while most of other algorithms in Table 1 do not. The hypothesis produced by
PRDT algorithm contains information of the structure that is comprehensible
to people. Though the text features that appear in the hypothesis are not com-
prehensible at first sight, it is easy to transform the features IDs to their original
terms by searching the feature-ID table.

Here, an example is given to show the comprehensibility of the hypothesis
produced by our system. The following one-split decision tree gives a binary
classifier for category “trade”.

trade m =
if projRootElement ◦ ∧2 (projTagName ◦ (= REUTERS) projContents ◦

listToSet ◦ setExists1 (∧2 (isElement projContentElement ◦

∧2 (projTagName ◦ (= TEXT) projContents ◦ listToSet ◦

setExists1 (∧2 (isElement projContentElement ◦

∧2 (projTagName ◦ (= TITLE) projContents ◦

listToSet ◦ setExists1 (isFeature projContentFeature ◦ setExists1 (
∧2 (projFeatureId ◦ (= 89) projFeatureWeight ◦ top)))))))))) m

then �
else ⊥

This theory clearly states the structure of the XML documents belonging to
“trade” class as follows.

“An XML document belongs to class trade iff (i) the root element of the
document is “REUTERS” and (ii) it contains an element named “TEXT” and
(iii) element “TEXT” contains an element named “TITLE” and (iv) element
“TITLE” contains the feature No.89 which represents word “budget”.”

306 X. Wu

5 Conclusion

This paper presents a novel inductive learning system that aims to produce com-
prehensible hypothesis for XML document classification. The knowledge repre-
sentation method is based on a higher-order logic formalism which is suitable for
representing individuals with complex structures. A systematic way for generat-
ing predicates is given by using predicate rewrite systems. The learning algorithm
of our system is a decision-tree learning algorithm driven by precision and re-
call. The algorithm works towards two goals at the same time: decreasing the
difference between the precision and recall and improve the F1 value. Experi-
mental results show that the PRDT algorithm performs very well on XML data
classification, and its ability to proving comprehensible theories make it more
distinctive.

References

1. Dagan, I., Karov, Y., Roth, D.: Mistake-driven learning in text categorization. In:
Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing, AAAI Press, Menlo Park (1997)

2. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms
and representations for text categorization. In: Proceedings of the Seventh Interna-
tional Conference on Information and Knowledge Management, pp. 148–155 (1998)

3. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: Proceed-
ings of ACM-SIGIR International Conference on Research and Development in
Information Retrieval, Athens, pp. 256–263 (2000)

4. Joachims, T.: A probabilistic analysis of the Rocchio algorithm with TFIDF for
text categorization. In: Proceedings of ICML 1997, 14th International Conference
on Machine Learning (1997)

5. Lewis, D., Ringuette, M.: A comparison of two learning algorithms for text cate-
gorization. In: Proceedings of SDAIR 1994, 3rd Annual Symposium on Document
Analysis and Information Retrieval (1994)

6. Lloyd, J.W.: Logic for Learning: Learning Comprehensible Theories from Struc-
tured Data. Springer, Heidelberg (2003)

7. Sebastiani, F.: A tutorial on automated text categorisation. In: Proceedings of
ASAI 1999, First Argentinian Symposium on Artificial Intelligence, Buenos Aires,
AR, pp. 7–35 (1999)

8. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
9. Wu, X.: Knowledge Representation and Learning For Semistructured Data. PhD

thesis, The Australian National University (2006)
10. Yang, Y.: An evaluation of statistical approaches to text categorization. ACM

Transactions on Information Systems 12(3), 296–333 (1998)
11. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-

rization. In: Proceedings of ICML 1997, 14th International Conference on Machine
Learning, Nashville, TX, Fisher, D.H. (eds.). pp. 412–420 (1997)

Author Index

Anderson, Grant 39

Balakrishnan, Sreeram 211
Baskiotis, Nicolas 49
Blockeel, Hendrik 24, 269
Bridewell, Will 63
Bruynooghe, Maurice 24, 88

Camacho, Rui 78
Chen, Jianzhong 22
Cohen, Paul R. 98
Cornuéjols, Antoine 112
Croonenborghs, Tom 88

d’Amato, Claudia 29
Driessens, Kurt 88

Esposito, Floriana 29

Fanizzi, Nicola 29
Fern, Alan 175
Fierens, Daan 24
Fonseca, Nuno A. 78
Frasconi, Paolo 1

Galstyan, Aram 98
Gaudel, Romaric 112
Goadrich, Mark 122

Hitzler, Pascal 147, 161

Inoue, Katsumi 225

Jensen, David D. 4, 27
Joshi, Sachindra 211

Koriche, Frédéric 25

Lamma, Evelina 132
Lehmann, Jens 147, 161

Maclin, Richard 254, 280
Mello, Paola 132
Muggleton, Stephen 22

Natarajan, Sriraam 175
Neville, Jennifer 27

Oliphant, Louis 191

Paes, Aline 200
Pfahringer, Bernhard 39

Ramakrishnan, Ganesh 211
Ramon, Jan 24
Ray, Oliver 225
Riguzzi, Fabrizio 132
Rocha, Ricardo 78

Santos, José 22
Santos Costa, Vı́tor 78, 200
Sasaki, Yosuke 239
Sebag, Michèle 49, 112
Shavlik, Jude 122, 191, 254, 280
Shoudai, Takayoshi 239
Srinivasan, Ashwin 211
Storari, Sergio 132

Tadepalli, Prasad 175
Todorovski, Ljupčo 63
Torrey, Lisa 254, 280

Uchida, Tomoyuki 239

Van Assche, Anneleen 269

Walker, Trevor 254, 280
Wu, Xiaobing 292

Yamasaki, Hitoshi 239

Zaverucha, Gerson 200

	Title Page
	Preface
	Organization
	Table of Contents
	Learning with Kernels and Logical Representations
	Motivations
	Overview of Methods

	Beyond Prediction: Directions for Probabilistic and Relational Learning
	Introduction
	Why Causal Models Are Useful
	Example: Fraud Detection at the NASD
	NASD
	Available Data
	The Potential for Causal Models

	Current Practice
	Experimental Design
	Joint Modeling
	Quasi-experimental Design

	Limitations of Current Approaches
	Research Opportunities
	Timeliness
	Risks and Benefits
	References

	Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract)
	Learning Directed Probabilistic Logical Models Using Ordering-Search
	Learning to Assign Degrees of Belief in Relational Domains
	Bias/Variance Analysis for Relational Domains
	Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases
	Introduction
	A Family of Semi-distances for Instances
	Basic Measure Definition
	Discussion
	Extensions

	Optimization
	Experiments on Similarity Search
	Conclusions and Ongoing Work

	Clustering Relational Data Based on Randomized Propositionalization
	Introduction
	Method
	Experiments
	Summary and Future Work

	Structural Statistical Software Testing with Active Learning in a Graph
	Introduction
	Position of the Problem
	Statistical Structural Software Testing
	SSST and Supervised Learning
	Extended Parikh Representation

	Overview
	Principle
	Init Module
	Constrained Exploration Module
	Generalization Module

	Experimental Validation
	Experimental Setting
	Experimental Results

	Discussion
	Conclusion and Perspectives

	Learning Declarative Bias
	Introduction
	Inductive Process Modeling
	Learning Bias by Inductive Logic Programming
	Empirical Evaluation
	Method
	Selecting a Performance Threshold
	Evaluating the Generalization Performance
	Semantic Analysis of the Induced Constraints

	General Discussion
	Conclusion

	ILP :- Just Trie It
	Introduction
	The Trie Data Structure
	Trieing MDIE
	Trie the Real World
	Experiments and Results
	Conclusions

	Learning Relational Options for Inductive Transfer in Relational Reinforcement Learning
	Introduction
	Background
	Relational Reinforcement Learning and the Blocks World
	The Options Framework
	Transfer Learning

	Relational Options
	Relational Skill Learning
	Experimental Evaluation
	Conclusions and Further Work

	Empirical Comparison of “Hard” and “Soft” Label Propagation for Relational Classification
	Introduction
	Problem Settings
	Algorithms
	Score Propagation
	Label Propagation

	Related Work
	Experiments with Synthetic Data
	Class Overlap
	ROC Analysis
	Effect of Noise

	Experiments with the CoRA Data
	Discussion and Future Work

	A Phase Transition-Based Perspective on Multiple Instance Kernels
	Introduction
	State of the Art
	Overview
	When MI Learning Meets Linear Programming
	Order Parameters and Experimental Setting
	Goal of the Experiments

	Experiments
	Summary of the Results
	LPP Satisfiability Landscape
	Generalization Error Landscape

	Conclusion and Perspectives

	Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates
	Introduction
	Learning Probabilities with GleanerSRL
	Gleaning Clauses
	Creating Features
	Learning to Predict Scores
	Calibrating Probabilities

	Experimental Results
	Related and Future Work

	Applying Inductive Logic Programming to Process Mining
	Introduction
	A Representation for Process Traces and Models
	Learning ICs Theories
	Experiments
	Related Works
	Conclusions and Future Works

	A Refinement Operator Based Learning Algorithm for the ALC Description Logic
	Introduction
	Preliminaries
	Description Logics
	Learning in Description Logics Using Refinement Operators

	Designing a Refinement Operator
	Completeness of the Operator
	Achieving Properness

	The Learning Algorithm
	Redundancy Elimination
	Creating a Full Learning Algorithm

	Preliminary Evaluation
	Related Work
	Conclusions and Further Work

	Foundations of Refinement Operators for Description Logics
	Introduction
	Description Logics
	Learning in Description Logics Using Refinement Operators
	Analysing the Properties of Refinement Operators
	Related Work
	Conclusions

	A Relational Hierarchical Model for Decision-Theoretic Assistance
	Introduction
	Decision-Theoretic Assistance
	A Relational Hierarchical Model of Assistance
	Relational Hierarchical Policies
	Goal Estimation
	Action Selection

	Experiments and Results
	Doorman Domain
	Kitchen Domain

	Related Work
	Conclusions and Future Work

	Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming
	Introduction
	Directed Stochastic Search Algorithm
	Modeling ILP's Search Space with Bayesian Networks
	Training the Model
	Using the Model to Guide Search

	Directed-Search Experiments
	Related Work
	Conclusions and Future Work

	Revising First-Order Logic Theories from Examples Through Stochastic Local Search
	Introduction
	Stochastic Search
	First-Order Logic Theory Revision
	Stochastic First-Order Logic Theory Revision
	Stochastic Local Search for Antecedents
	Stochastic Local Search for Revisions

	Experimental Results
	Conclusions

	Using ILP to Construct Features for Information Extraction from Semi-structured Text
	Introduction
	Feature Definitions Using Inductive Logic Programming
	Experimental Evaluation
	Aims
	Materials
	Method
	Results

	Concluding Remarks

	Mode-Directed Inverse Entailment for Full Clausal Theories
	Introduction
	Background
	Notation and Terminology
	Mode Declarations
	MDIE (Mode Directed Inverse Entailment)
	HAIL (Hybrid Abductive Inductive Learning)
	SOLAR (SOL Resolution for Advanced Reasoning)

	Motivating Example: Fluid Modelling
	Full Clausal Hybrid Abductive Inductive Learning
	Related Work
	Conclusions

	Mining of Frequent Block Preserving Outerplanar Graph Structured Patterns
	Introduction
	Graph Pattern
	Block Preserving Outerplanar Graph Patterns and Block Tree Patterns
	Matching Algorithm for Block Preserving Outerplanar Graph Patterns
	Pattern Enumeration Algorithm for Frequent BPO Graph Pattern Problem
	Experimental Result
	Conclusion and Future Works

	Relational Macros for Transfer in Reinforcement Learning
	Introduction
	Reinforcement Learning in RoboCup
	Related Work in Transfer Learning
	Executing a Relational Macro
	Learning a Relational Macro
	Structure Learning
	Ruleset Learning

	Transferring a Relational Macro
	Experimental Results
	Conclusions and Future Work

	Seeing the Forest Through the Trees Learning a Comprehensible Model from a First Order Ensemble
	Introduction
	Proposed Method
	Computing Heuristics from the Ensemble
	Generation of Candidate Test Queries
	Computing the Optimal Split
	Stop Criteria
	Prediction of a Leaf in the New Tree

	Empirical Evaluation
	Conclusions and Future Work

	Building Relational World Models for Reinforcement Learning
	Introduction
	Background
	Building World Models
	Terminology
	Algorithm Overview
	Preimage Selection
	Learning Concepts Via ILP
	Building the MDP
	The RL Learning Cycle

	Empirical Results
	Domains
	Learning Algorithms
	Results

	Related Work
	Conclusions and Future Work
	References

	An Inductive Learning System for XML Documents
	Introduction
	Knowledge Representation for XML Documents
	The Structure of an XML Document
	Representation of Individuals
	Representation of Features

	Precision/Recall-Driven Decision-Tree (PRDT) Algorithm
	Precision and Recall
	Structured Feature Selection
	Node Selection
	The Precision/Recall-Driven Decision-Tree Algorithm

	Experiments
	The Dataset
	Experimental Results

	Conclusion

	Author Index

